Skip to main content
Log in

Analysis of the effects of inbreeding on lifespan and starvation resistance in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Because of their decreased overall fitness and genetic variability inbred individuals are expected to show reduced survival and lifespan under most environmental conditions as compared with outbred individuals. Whereas evidence for the deleterious effects of inbreeding on lifespan has been previously provided, only a few studies have investigated effects of inbreeding on survival under starved conditions. In the present study we compared the abilities of inbred and outbred adult Drosophila melanogaster to survive under starved and fed conditions. We found that inbreeding reduced lifespan but had no effect on starvation resistance. The results indicate highly trait specific consequences of inbreeding. Possible mechanisms behind the observed results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D (2010) Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J Insect Physiol 56:336–340

    Article  PubMed  CAS  Google Scholar 

  • Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242

    Article  PubMed  CAS  Google Scholar 

  • Ayroles JF, Hughes KA, Rowe KC, Reedy MM, Rodriguez-Zas SL, Drnevich JM, Cáceres CE, Paige KN (2009) A genome wide assessment of inbreeding depression: gene number, function, and mode of action. Conserv Biol 23:920–930

    Article  PubMed  Google Scholar 

  • Barrett SCH, Charlesworth D (1991) Effects of a change in the level of inbreeding on the genetic load. Nature 352:522–524

    Article  PubMed  CAS  Google Scholar 

  • Bijlsma R, Bundgaard J, Van Putten WF (1999) Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. J Evol Biol 12:1125–1137

    Article  Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J Evol Biol 13:502–514

    Article  Google Scholar 

  • Bilde T, Maklakov AA, Meisner K, la Guardia L, Friberg U (2009) Sex-differences in the genetic architecture of lifespan in a seed beetle: extreme inbreeding extends male lifespan. BMC Evol Biol 9:33

    Article  PubMed  Google Scholar 

  • Bubli OA, Imasheva AG, Loeschcke V (1998) Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval diet. Evolution 50:619–625

    Article  Google Scholar 

  • Burger JMS, Hwangbo DS, Corby-Harris V, Promislow DEL (2007) The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6:63–71

    Article  PubMed  CAS  Google Scholar 

  • Buskirk JV, Willi Y (2006) The change in quantitative genetic variation with inbreeding. Evolution 60:2428–2434

    Article  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  PubMed  CAS  Google Scholar 

  • Chippendale AK, Leroi AM, Kim SB, Rose MR (1993) Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 6:171–193

    Article  Google Scholar 

  • Clarke JM, Maynard Smith J (1955) The genetics and cytology of Drosophila subobscura. XI. Hybrid vigor and longevity. J Genet 53:172–180

    Article  Google Scholar 

  • Crnokrak P, Barrett SCH (2002) Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358

    PubMed  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Curtsinger JW, Khazaeli AA (2002) Lifespan, QTLs, age-specificity, and pleiotropy in Drosophila. Mech Ageing Dev 123:81–93

    Article  PubMed  Google Scholar 

  • Dahlgaard J, Hoffmann AA (2000) Stress resistance and environmental dependency of inbreeding depression in Drosophila melanogaster. Conserv Biol 14:1187–1192

    Article  Google Scholar 

  • DeRose MA, Roff DA (1999) A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution 53:1288–1292

    Article  Google Scholar 

  • Dudash MR, Carr DE (1998) Genetics underlying inbreeding depression in Mimulus with contrasting mating systems. Nature 393:682–684

    Article  CAS  Google Scholar 

  • Frankham R, Gilligan DM, Morris D, Briscoe DA (2001) Inbreeding and extinction: effects of purging. Conserv Genet 2:279–285

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gershman SN, Barnett CA, Pettinger AM, Weddle CB, Hunt J, Sakaluk SK (2010) Inbred decorated crickets exhibit higher measures of macroparasitic immunity than outbred individuals. Heredity 105:282–289

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez BM (1923) Experimental studies on the duration of life. VIII. The influence upon duration of life of certain mutant genes of Drosophila melanogaster. Am Nat 57:289–325

    Article  Google Scholar 

  • Harbison ST, Yamamoto AH, Fanara JJ, Norga KK, Mackay TFC (2004) Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics 166:1807–1823

    Article  PubMed  CAS  Google Scholar 

  • Hawkins AJS, Day AJ (1999) Metabolic interrelations underlying the physiological and evolutionary advantages of genetic diversity. Am Zool 39:401–411

    CAS  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, New York

    Google Scholar 

  • Hoffmann AA, Hallas R, Sinclair C, Mitrovski P (2001) Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. Evolution 55:1621–1630

    PubMed  CAS  Google Scholar 

  • Hughes KA (1995a) The inbreeding decline and average dominance of genes affecting male life-history characters in Drosophila melanogaster. Genet Res 65:41–52

    Article  PubMed  CAS  Google Scholar 

  • Hughes KA (1995b) The evolutionary genetics of male life-history characters in Drosophila melanogaster. Evolution 49:521–537

    Article  Google Scholar 

  • Hughes RA, Inouye BD, Johanson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Hyde RR (1913) Inheritance of length of life in Drosophila ampelophila. Proc Indiana Acad Sci 113–123

  • Johnston SL, Souter DM, Erwin SS, Tolkamp BJ, Yearsley JM, Gordon IJ, Illius AW, Kyriazakis I, Speakman JR (2007) Associations between basal metabolic rate and reproductive performance in C57BL/6J mice. J Exp Biol 210:65–74

    Article  PubMed  Google Scholar 

  • Karkkainen K, Kuittinen H, van Treuren R, Vogl C, Oikarinen S, Savolainen O (1999) Genetic basis of inbreeding depression in Arabis petraea. Evolution 53:1354–1365

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Ketola T, Kotiaho JS (2009a) Inbreeding, energy use and condition. J Evol Biol 22:770–781

    Article  PubMed  CAS  Google Scholar 

  • Ketola T, Kotiaho JS (2009b) Inbreeding, energy use and sexual signalling. Evol Ecol 24:761–772

    Article  Google Scholar 

  • Kolss M, Vijendravarma RK, Schwaller G, Kawecki TJ (2009) Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution 63:2389–2401

    Article  PubMed  Google Scholar 

  • Konarzewski M, Diamond J (1995) Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49:1239–1248

    Article  Google Scholar 

  • Kristensen TN, Sørensen AC (2005) Inbreeding—lessons from animal breeding, evolutionary biology and conservation genetics. Anim Sci 80:121–133

    Google Scholar 

  • Kristensen TN, Dahlgaard J, Loeschcke V (2002) Inbreeding affects Hsp70 expression in two species of Drosophila even at benign temperatures. Evol Ecol Res 4:1209–1216

    Google Scholar 

  • Kristensen TN, Dahlgaard J, Loeschcke V (2003) Effects of inbreeding and environmental stress on fitness—using Drosophila buzzatii as a model organism. Conserv Genet 4:453–465

    Article  Google Scholar 

  • Kristensen TN, Sørensen P, Kruhøffer M, Pedersen KS, Loeschcke V (2005) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171:157–167

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Sørensen P, Pedersen KS, Kruhøffer M, Loeschcke V (2006) Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V (2010) Research on inbreeding in the ‘omic’ era. Trends Ecol Evol 25:44–52

    Article  PubMed  Google Scholar 

  • Leips J, Mackay TFC (2000) Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics 155:1773–1788

    PubMed  CAS  Google Scholar 

  • Leroi AM, Chippendale AK, Rose MR (1994a) Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 1. The role of genotype-by-environment interaction. Evolution 48:1244–1257

    Article  Google Scholar 

  • Leroi AM, Chen WR, Rose MR (1994b) Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 2.Stability of genetic correlations. Evolution 48:1258–1268

    Article  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  Google Scholar 

  • Liao W, Reed DH (2009) Inbreeding–environment interactions increase extinction risk. Anim Conserv 12:54–61

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Maynard Smith J (1959) Sex-limited inheritance of longevity in Drosophila subobscura. J Genet 56:1–9

    Google Scholar 

  • Mikkelsen K, Loeschcke V, Kristensen TN (2010) Trait specific consequences of fast and slow inbreeding: lessons from captive populations of Drosophila melanogaster. Conserv Genet 11:479–488

    Article  Google Scholar 

  • Mueller P, Diamond J (2001) Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc Natl Acad Sci USA 98:12550–12554

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J-Ã… (2002) Metabolic consequences of hard work. Proc R Soc Lond B 269:1735–1739

    Article  Google Scholar 

  • Nuzhdin SV, Pasyukova EG, Dilda CL, Zeng Z-B, Mackay TFC (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94:9734–9739

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin SV, Khazaeli AA, Curtisinger JW (2005) Survival analysis of life span quantitative trait loci in Drosophila melanogaster. Genetics 170:719–731

    Article  PubMed  CAS  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkey DW, Frankham R (2006) Realistic levels of inbreeding depression sstrongly affects extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Paige KN (2010) The functional genomics of inbreeding depression: a new approach to an old problem. Bioscience 60:267–277

    Article  Google Scholar 

  • Pearl R, Parker SL (1921) Experimental studies on the duration of life. I. Introductory discussion of the duration of life in Drosophila. Am Nat 55:481–509

    Article  Google Scholar 

  • Pearl R, Parker SL, Gonzalez BM (1923) Experimental studies on the duration of life. VII. The mendelian inheritance of duration of life in crosses of wild type and Quintuple stocks of Drosophila melanogaster. Am Nat 57:153–192

    Article  Google Scholar 

  • Pedersen KS, Kristensen TN, Loeschcke V (2005) Effects of inbreeding and rate on inbreeding in Drosophila melanogaster—Hsp70 expression and fitness. J Evol Biol 18:756–762

    Article  PubMed  CAS  Google Scholar 

  • Pedersen KS, Kristensen TN, Loeschcke V, Petersen BO, Duus JØ, Nielsen NC, Malmendal A (2008) Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics 180:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206

    Article  PubMed  CAS  Google Scholar 

  • Radwan J (2003) Inbreeding depression in fecundity and inbred line extinction in the bulb mite, Rhizoglyphus robini. Heredity 90:371–376

    Article  PubMed  CAS  Google Scholar 

  • Rantala MJ, Roff DA (2006) Analysis of the importance of genotypic variation, metabolic rate, morphology, sex and development time on immune function in the cricket, Gryllus firmus. J Evol Biol 19:834–843

    Article  PubMed  CAS  Google Scholar 

  • Raubenheimer D, Simpson SJ (1999) Integrating nutrition: a geometrical approach. Entomol Exp Appl 91:67–82

    Article  Google Scholar 

  • Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Fitness and adaptation in a novel environment: effect of inbreeding, prior environment, and lineage. Evolution 57:1822–1828

    PubMed  Google Scholar 

  • Reed DH, Nicholas AC, Stratton GE (2007a) Genetic quality of individuals impacts population dynamics. Anim Conserv 10:275–283

    Article  Google Scholar 

  • Reed DH, Nicholas AC, Stratton GE (2007b) Inbreeding levels and prey abundance interact to determine fecundity in natural populations of two species of wolf spider. Conserv Genet 8:1061–1071

    Article  Google Scholar 

  • Reinhold K (1999) Energetically costly behaviour and the evolution of resting metabolic rate in insects. Funct Ecol 13:217–224

    Article  Google Scholar 

  • Rion S, Kawecki TJ (2007) Evolutionary biology of starvation resistance: what we have learned from Drosophila. J Evol Biol 20:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman and Hall, New York

    Google Scholar 

  • Roff DA (1998) Effects of inbreeding on morphological and life history traits of the sand cricket, Gryllus firmus. Heredity 81:28–37

    Article  Google Scholar 

  • Roff DA (2002) Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution 56:768–775

    PubMed  Google Scholar 

  • Roff DA, DeRose MA (2001) The evolution of trade-offs: effects of inbreeding on fecundity relationships in the cricket Gryllus firmus. Evolution 55:111–121

    PubMed  CAS  Google Scholar 

  • Roff DA, Emerson K (2006) Epistasis and dominance: evidence for differential effects in life-history versus morphological traits. Evolution 60:1981–1990

    PubMed  Google Scholar 

  • Rose MR, Charlesworth B (1981) Genetics of life history in Drosophila melanogaster. I. Sib analysis of adult females. Genetics 97:173–186

    PubMed  CAS  Google Scholar 

  • Service PM, Rose MR (1985) Genetic covariation among life-history components: the effect of novel environments. Evolution 39:943–945

    Article  Google Scholar 

  • Service PM, Hutchinson EW, Mackinley MD, Rose MR (1985) Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool 58:380–389

    Google Scholar 

  • Simmons FH, Bradley TJ (1997) An analysis of resource allocation in response to dietary yeast in Drosophila melanogaster. J Insect Physiol 43:779–788

    Article  PubMed  CAS  Google Scholar 

  • Smith EM, Hoi JT, Eissenberg JC, Shoemaker JD, Neckameyer WS, Ilvarsonn AM, Harshman LG, Schlegel VL, Zempleni J (2007) Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J Nutr 137:2006–2012

    PubMed  CAS  Google Scholar 

  • Snoke MS, Promislow DEL (2003) Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity 91:546–556

    Article  PubMed  CAS  Google Scholar 

  • Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Sverdlov ES, Wool D (1975) Some aspects of survival of starved adult Tribolium castaneum (Herbst). J Stored Prod Res 11:149–154

    Article  Google Scholar 

  • Swindell WR, Bouzat JL (2006a) Inbreeding depression and male survivorship in Drosophila: implications for senescence theory. Genetics 172:317–327

    Article  PubMed  CAS  Google Scholar 

  • Swindell WR, Bouzat JL (2006b) Selection and inbreeding depression: effects of inbreeding rate and inbreeding environment. Evolution 60:1014–1022

    PubMed  Google Scholar 

  • Swindell WR, Bouzat JL (2006c) Ancestral inbreeding reduces the magnitude of inbreeding depression in Drosophila melanogaster. Evolution 60:762–767

    PubMed  Google Scholar 

  • Swindell WR, Bouzat JL (2006d) Reduced inbreeding depression due to historical inbreeding in Drosophila melanogaster: evidence for purging. J Evol Biol 19:1257–1264

    Article  PubMed  CAS  Google Scholar 

  • Tower J (1996) Aging mechanisms in fruit flies. BioEssays 18:799–807

    Article  PubMed  CAS  Google Scholar 

  • Valtonen TM, Roff DA, Rantala MJ (2011) Analysis of the effects of early nutritional environment on inbreeding depression in Drosophila melanogaster. J Evol Biol 24:196–205

    Article  PubMed  CAS  Google Scholar 

  • Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6:46

    Article  PubMed  Google Scholar 

  • Vermeulen CJ, Bijlsma R (2004) Changes in mortality patterns and temperature dependence of lifespan in Drosophila melanogaster caused by inbreeding. Heredity 92:275–281

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen CJ, Bijlsma R, Loeschcke V (2008) A major QTL affects temperature sensitive adult lethality and inbreeding depression in life span in Drosophila melanogaster. BMC Evol Biol 8:297

    Article  PubMed  Google Scholar 

  • Wang M-H, Lazebny O, Harshman LG, Nuzhdin SV (2004) Environment-dependent survival of Drosophila melanogaster: a quantitative genetic analysis. Aging Cell 3:133–140

    Article  PubMed  CAS  Google Scholar 

  • Wenzel U (2006) Nutrition, sirtuins and aging. Genes Nutr 1:85–93

    Article  PubMed  CAS  Google Scholar 

  • Willi Y, Van Bushkirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Willis JH (1999) The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53:1678–1691

    Article  CAS  Google Scholar 

  • Wright LI, Tregenza T, Hosken DJ (2008) Inbreeding, inbreeding depression and extinction. Conserv Genet 9:833–843

    Article  Google Scholar 

Download references

Acknowledgments

We are most grateful for Minna Lindroth for her assistance in the experiment. This study was supported by the Academy of Finland to M.J.R and by the Finnish Cultural Foundation to T.M.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terhi M. Valtonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 146 kb)

Supplementary material 2 (DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valtonen, T.M., Roff, D.A. & Rantala, M.J. Analysis of the effects of inbreeding on lifespan and starvation resistance in Drosophila melanogaster . Genetica 139, 525–533 (2011). https://doi.org/10.1007/s10709-011-9574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9574-0

Keywords

Navigation