Skip to main content
Log in

Confounding from cryptic relatedness in haplotype-based association studies

  • Original Research
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Cryptic relatedness was suggested to be an important source of confounding in population-based association studies (PBAS). The impact of cryptic relatedness on the performance of haplotype phase inference and haplotype-based association tests is not clear. In this study, we used the Hapmap genetic data to simulate a set of related samples. We evaluated the accuracy of haplotype phase inferred by PHASE 2.1 and calculated the power, type I error rates, accuracy and positive prediction value (PPV) of haplotype frequency-based association tests (HFAT) and haplotype similarity-based association tests (HSAT) under various scenarios, considering relatedness levels, disease models and sample sizes. Cryptic relatedness appeared to slightly increase the accuracy of haplotype phase inference. We observed significant negative effect of cryptic relatedness on the performance of HFAT and HSAT. Ignoring cryptic relatedness may increase spurious association results in haplotype-based PBAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alders M, Koopmann TT, Christiaans I, Postema PG, Beekman L, Tanck MW, Zeppenfeld K, Loh P, Koch KT, Demolombe S et al (2009) Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet 84:468–476

    Article  CAS  PubMed  Google Scholar 

  • Beckmann L, Thomas DC, Fischer C, Chang-Claude J (2005) Haplotype sharing analysis using mantel statistics. Hum Hered 59:67–78

    Article  CAS  PubMed  Google Scholar 

  • Chen HS, Zhu X, Zhao H, Zhang S (2003) Qualitative semi-parametric test for genetic associations in case-control designs under structured populations. Ann Hum Genet 67:250–264

    Article  CAS  PubMed  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448:591–594

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ et al (2008a) Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet 17:1803–1813

    Article  CAS  PubMed  Google Scholar 

  • Liu YZ, Wilson SG, Wang L, Liu XG, Guo YF, Li J, Yan H, Deloukas P, Soranzo N, Chinnapen-Horsley U et al (2008b) Identification of PLCL1 gene for hip bone size variation in females in a genome-wide association study. PLoS ONE 3:e3160

    Article  PubMed  Google Scholar 

  • Liu YZ, Guo YF, Wang L, Tan LJ, Liu XG, Pei YF, Yan H, Xiong DH, Deng FY, Yu N et al (2009) Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet 5:e1000420

    Article  PubMed  Google Scholar 

  • Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36:512–517

    Article  CAS  PubMed  Google Scholar 

  • Morton NE, Collins A (1998) Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci USA 95:11389–11393

    Article  CAS  PubMed  Google Scholar 

  • Newman DL, Abney M, McPeek MS, Ober C, Cox NJ (2001) The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet 69:1146–1148

    Article  CAS  PubMed  Google Scholar 

  • Nolte IM, de Vries AR, Spijker GT, Jansen RC, Brinza D, Zelikovsky A, Te Meerman GJ (2007) Association testing by haplotype-sharing methods applicable to whole-genome analysis. BMC Proc 1(Suppl 1):S129

    Article  PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  Google Scholar 

  • Rietschel M, Beckmann L, Strohmaier J, Georgi A, Karpushova A, Schirmbeck F, Boesshenz KV, Schmal C, Burger C, Jamra RA et al (2008) G72 and its association with major depression and neuroticism in large population-based groups from Germany. Am J Psychiatry 165:753–762

    Article  PubMed  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  CAS  PubMed  Google Scholar 

  • Risch N, Teng J (1998) The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 8:1273–1288

    CAS  PubMed  Google Scholar 

  • Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434

    Article  PubMed  Google Scholar 

  • Sha Q, Chen HS, Zhang S (2007) A new association test using haplotype similarity. Genet Epidemiol 31:577–593

    Article  PubMed  Google Scholar 

  • Shifman S, Darvasi A (2001) The value of isolated populations. Nat Genet 28:309–310

    Article  CAS  PubMed  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  CAS  PubMed  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han JH et al (2001a) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493

    Article  CAS  PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001b) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  Google Scholar 

  • Voight BF, Pritchard JK (2005) Confounding from cryptic relatedness in case-control association studies. PLoS Genet 1:e32

    Article  PubMed  Google Scholar 

  • Wright AF, Carothers AD, Pirastu M (1999) Population choice in mapping genes for complex diseases. Nat Genet 23:397–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhu X, Zhao H (2003) On a semiparametric test to detect associations between quantitative traits and candidate genes using unrelated individuals. Genet Epidemiol 24:44–56

    Article  PubMed  Google Scholar 

  • Zhang F, Wang Y, Deng HW (2008) Comparison of population-based association study methods correcting for population stratification. PLoS ONE 3:e3392

    Article  PubMed  Google Scholar 

  • Zhu X, Zhang S, Zhao H, Cooper RS (2002) Association mapping, using a mixture model for complex traits. Genet Epidemiol 23:181–196

    Article  PubMed  Google Scholar 

  • Zhu X, Li S, Cooper RS, Elston RC (2008) A unified association analysis approach for family and unrelated samples correcting for stratification. Am J Hum Genet 82:352–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Investigators of this work were partially supported by grants from NIH (R01 AR050496, R21 AG027110, R01 AG026564, P50 AR055081 and R21 AA015973). The study was also benefited from grants from National Science Foundation of China, Huo Ying Dong Education Foundation, HuNan Province, Xi’an Jiaotong University, and the Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Hong-Wen Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Deng, HW. Confounding from cryptic relatedness in haplotype-based association studies. Genetica 138, 945–950 (2010). https://doi.org/10.1007/s10709-010-9476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9476-6

Keywords

Navigation