Skip to main content

Advertisement

Log in

Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Gene therapy applications require efficient tools for the stable delivery of genetic information into eukaryotic genomes. Most current gene delivery strategies are based on viral vectors. However, a number of drawbacks, such as the limited cargo capacity, host immune response and mutational risks, highlight the need for alternative gene delivery tools. A comprehensive gene therapy tool kit should contain a range of vectors and techniques that can be adapted to different targets and purposes. Transposons provide a potentially powerful approach. However, transposons encompass a large number of different molecular mechanisms, some of which are better suited to gene delivery applications than others. Here, we consider the range and potentials of the various mechanisms, focusing on the cut-and-paste transposons as one of the more promising avenues towards gene therapy applications. Several cut-and-paste transposition systems are currently under development. We will first consider the mechanisms of piggyBac and the hAT family elements Tol1 and Tol2, before focusing on the mariner family elements including Mos1, Himar1 and Hsmar1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

EMSA:

Electrophoretic mobility shift assay

HTH:

Helix-turn-helix

IR:

Inverted repeat

kb:

Kilobase

LTR:

Long-terminal-repeat

NLS:

Nuclear localization signal

OPI:

Over-production inhibition

PEC:

Paired-end complex

Rep:

Replication

RSS:

Recombination signal sequences

RT:

Reverse-transcription

SEC:

Single-end complex

Tnp:

Transposon

TP:

Target-primed

Txn:

Transcription

References

  • Aldaz H, Schuster E, Baker TA (1996) The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Cell 85:257–269

    Article  CAS  PubMed  Google Scholar 

  • Atkinson H, Chalmers R (2009) Delivering the goods: viral and non-viral gene therapy vectors and the inherent limits on cargo DNA and internal sequences. Genetica (in press)

  • Auge-Gouillou C, Hamelin MH, Demattei MV, Periquet G, Bigot Y (2001) The ITR binding domain of the mariner Mos-1 transposase. Mol Genet Genomics 265:58–65

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Brillet B, Germon S, Hamelin MH, Bigot Y (2005a) Mariner Mos1 transposase dimerizes prior to ITR binding. J Mol Biol 351:117–130

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Brillet B, Hamelin MH, Bigot Y (2005b) Assembly of the mariner Mos1 synaptic complex. Mol Cell Biol 25:2861–2870

    Article  CAS  PubMed  Google Scholar 

  • Baker TA (1993) Protein-DNA assemblies controlling lytic development of bacteriophage Mu. Curr Opin Genet Dev 3:708–712

    Article  CAS  PubMed  Google Scholar 

  • Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F (2008) Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 132:208–220

    Article  CAS  PubMed  Google Scholar 

  • Bessereau JL (2006) Insertional mutagenesis in C. elegans using the Drosophila transposon Mos1: a method for the rapid identification of mutated genes. Methods Mol Biol 351:59–73

    CAS  PubMed  Google Scholar 

  • Bhasin A, Goryshin IY, Reznikoff WS (1999) Hairpin formation in Tn5 transposition. J Biol Chem 274:37021–37029

    Article  CAS  PubMed  Google Scholar 

  • Bischerour J, Chalmers R (2007) Base-flipping dynamics in a DNA hairpin processing reaction. Nucleic Acids Res 35:2584–2595

    Article  CAS  PubMed  Google Scholar 

  • Bischerour J, Chalmers R (2009) Base flipping in Tn10 transposition: an active flip and capture mechanism. PLoS One 4:e6201

    Google Scholar 

  • Bolland S, Kleckner N (1996) The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 84:223–233

    Article  CAS  PubMed  Google Scholar 

  • Buisine N, Tang CM, Chalmers R (2002) Transposon-like correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett 522:52–58

    Article  CAS  PubMed  Google Scholar 

  • Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  PubMed  Google Scholar 

  • Bushman FD (1994) Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci USA 91:9233–9237

    Article  CAS  PubMed  Google Scholar 

  • Bushman FD (2007) Retroviral integration and human gene therapy. J Clin Invest 117:2083–2086

    Article  CAS  PubMed  Google Scholar 

  • Chalmers RM, Kleckner N (1996) IS10/Tn10 transposition efficiently accommodates diverse transposon end configurations. Embo J 15:5112–5122

    CAS  PubMed  Google Scholar 

  • Chalmers R, Guhathakurta A, Benjamin H, Kleckner N (1998) IHF modulation of Tn10 transposition: sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93:897–908

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Robbins TP, Almeida J, Hudson A, Carpenter R (1989) Consequences and mechanisms of transposition in Antirrhinum majus. Mobile DNA, Washington, DC, pp 413–436

    Google Scholar 

  • Crellin P, Sewitz S, Chalmers R (2004) DNA looping and catalysis; the IHF-folded arm of Tn10 promotes conformational changes and hairpin resolution. Mol Cell 13:537–547

    Article  CAS  PubMed  Google Scholar 

  • Crenes G, Ivo D, Herisson J, Dion S, Renault S, Bigot Y, Petit A (2009) The bacterial Tn9 chloramphenicol resistance gene: an attractive DNA segment for Mos1 mariner insertions. Mol Genet Genomics 281:315–328

    Article  CAS  PubMed  Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  CAS  Google Scholar 

  • Davies DR, Goryshin IY, Reznikoff WS, Rayment I (2000) Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289:77–85

    Article  CAS  PubMed  Google Scholar 

  • Dawson A, Finnegan DJ (2003) Excision of the Drosophila mariner transposon mos1. Comparison with bacterial transposition and v(d)j recombination. Mol Cell 11:225–235

    Article  CAS  PubMed  Google Scholar 

  • Duval-Valentin G, Marty-Cointin B, Chandler M (2004) Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J 23:3897–3906

    Article  CAS  PubMed  Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  • Emmons SW, Yesner L, Ruan KS, Katzenberk D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32:55–65

    Article  CAS  PubMed  Google Scholar 

  • Fernando S, Fletcher BS (2006) Sleeping beauty transposon-mediated nonviral gene therapy. BioDrugs 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Muller R, Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113

    Article  PubMed  Google Scholar 

  • Geurts AM, Hackett CS, Bell JB, Bergemann TL, Collier LS, Carlson CM, Largaespada DA, Hackett PB (2006) Structure-based prediction of insertion-site preferences of transposons into chromosomes. Nucleic Acids Res 34:2803–2811

    Article  CAS  PubMed  Google Scholar 

  • Gorman C, Bullock C (2000) Site-specific gene targeting for gene expression in eukaryotes. Curr Opin Biotechnol 11:455–460

    Article  CAS  PubMed  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  CAS  PubMed  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  CAS  PubMed  Google Scholar 

  • Gueguen E, Rousseau P, Duval-Valentin G, Chandler M (2005) The transpososome: control of transposition at the level of catalysis. Trends Microbiol 13:543–549

    Article  CAS  PubMed  Google Scholar 

  • Guynet C, Hickman AB, Barabas O, Dyda F, Chandler M, Ton-Hoang B (2008) In vitro reconstitution of a single-stranded transposition mechanism of IS608. Mol Cell 29:302–312

    Article  CAS  PubMed  Google Scholar 

  • Haren L, Ton-Hoang B, Chandler M (1999) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281

    Article  CAS  PubMed  Google Scholar 

  • Hartl D (2001) Discovery of the transposable element mariner. Genetics 157:471–476

    CAS  PubMed  Google Scholar 

  • Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F (2000) Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell 5:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Hickman AB, Perez ZN, Zhou L, Musingarimi P, Ghirlando R, Hinshaw JE, Craig NL, Dyda F (2005) Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 12:715–721

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Izsvak Z (2006) Transposons for gene therapy!. Curr Gene Ther 6:593–607

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Katzer A, Stuwe EE, Fiedler D, Knespel S, Izsvak Z (2007) Targeted sleeping beauty transposition in human cells. Mol Ther 15:1137–1144

    CAS  PubMed  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83:8684–8688

    Article  CAS  PubMed  Google Scholar 

  • Jain C, Kleckner N (1993) Preferential cis action of IS10 transposase depends upon its mode of synthesis. Mol Microbiol 9:249–260

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Gellert M (2004) The taming of a transposon: V(D)J recombination and the immune system. Immunol Rev 200:233–248

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol 3:e181

    Article  PubMed  Google Scholar 

  • Kennedy AK, Guhathakurta A, Kleckner N, Haniford DB (1998) Tn10 transposition via a DNA hairpin intermediate. Cell 95:125–134

    Article  CAS  PubMed  Google Scholar 

  • Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA (1999) Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev 13:3070–3080

    Article  CAS  PubMed  Google Scholar 

  • Kuduvalli PN, Mitra R, Craig NL (2005) Site-specific Tn7 transposition into the human genome. Nucleic Acids Res 33:857–863

    Article  CAS  PubMed  Google Scholar 

  • Lampe DJ, Churchill ME, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. Embo J 15:5470–5479

    CAS  PubMed  Google Scholar 

  • Lampe DJ, Grant TE, Robertson HM (1998) Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149:179–187

    CAS  PubMed  Google Scholar 

  • Laufs S, Nagy KZ, Giordano FA, Hotz-Wagenblatt A, Zeller WJ, Fruehauf S (2004) Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther 10:874–881

    Article  CAS  PubMed  Google Scholar 

  • Lavoie BD, Chaconas G (1996) Transposition of phage Mu DNA. Curr Top Microbiol Immunol 204:83–102

    CAS  PubMed  Google Scholar 

  • Lipkow K, Buisine N, Chalmers R (2004a) Promiscuous target interactions in the mariner transposon Himar1. J Biol Chem 279:48569–48575

    Article  CAS  PubMed  Google Scholar 

  • Lipkow K, Buisine N, Lampe DJ, Chalmers R (2004b) Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex. Mol Cell Biol 24:8301–8311

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R (2007) The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 27:1125–1132

    Article  PubMed  Google Scholar 

  • Lohe AR, Hartl DL (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol 13:549–555

    CAS  PubMed  Google Scholar 

  • Lohe AR, De Aguiar D, Hartl DL (1997) Mutations in the mariner transposase: the D, D(35)E consensus sequence is nonfunctional. Proc Natl Acad Sci USA 94:1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Lohe AR, Timmons C, Beerman I, Lozovskaya ER, Hartl DL (2000) Self-inflicted wounds, template-directed gap repair and a recombination hotspot. Effects of the mariner transposase. Genetics 154:647–656

    CAS  PubMed  Google Scholar 

  • McCaffrey AP, Fawcett P, Nakai H, McCaffrey RL, Ehrhardt A, Pham TT, Pandey K, Xu H, Feuss S, Storm TA, Kay MA (2008) The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol Ther 16:931–941

    Article  CAS  PubMed  Google Scholar 

  • Mhashilkar A, Chada S, Roth JA, Ramesh R (2001) Gene therapy. Therapeutic approaches and implications. Biotechnol Adv 19:279–297

    Article  CAS  PubMed  Google Scholar 

  • Mitra R, Fain-Thornton J, Craig NL (2008) Piggybac can bypass DNA synthesis during cut and paste transposition. EMBO J 27:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Mizuuchi K (1992) Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem 61:1011–1051

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Lopez M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Biol 382:567–572

    Article  CAS  PubMed  Google Scholar 

  • Nowotny M, Gaidamakov SA, Crouch RJ, Yang W (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814

    Article  CAS  PubMed  Google Scholar 

  • Pietrokovski S, Henikoff S (1997) A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Mol Gen Genet 254:689–695

    Article  CAS  PubMed  Google Scholar 

  • Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332

    Article  CAS  PubMed  Google Scholar 

  • Reznikoff WS, Goryshin IY, Jendrisak JJ (2004) Tn5 as a molecular genetics tool: In vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol Biol 260:83–96

    CAS  PubMed  Google Scholar 

  • Richardson JM, Dawson A, O’Hagan N, Taylor P, Finnegan DJ, Walkinshaw MD (2006) Mechanism of Mos1 transposition: insights from structural analysis. Embo J 25:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Rio DC (1990) Molecular mechanisms regulating Drosophila P element transposition. Annu Rev Genet 24:543–578

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KK, Bu Z, Fleming KG, Schatz DG, Engelman DM, Coleman JE (1996) A zinc-binding domain involved in the dimerization of RAG1. J Mol Biol 260:70–84

    Article  CAS  PubMed  Google Scholar 

  • Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F (2005) Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell 20:143–154

    Article  CAS  PubMed  Google Scholar 

  • Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96:1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Sakai J, Chalmers RM, Kleckner N (1995) Identification and characterization of a pre-cleavage synaptic complex that is an early intermediate in Tn10 transposition. Embo J 14:4374–4383

    CAS  PubMed  Google Scholar 

  • Savilahti H, Mizuuchi K (1996) Mu transpositional recombination: donor DNA cleavage and strand transfer in trans by the Mu transposase. Cell 85:271–280

    Article  CAS  PubMed  Google Scholar 

  • Schaffer DV, Koerber JT, Lim KI (2008) Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng 10:169–194

    Article  CAS  PubMed  Google Scholar 

  • Shapiro JA (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci USA 76:1933–1937

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Liburd J, Wardle SJ, Haniford DB (2008) The nucleoid binding protein H-NS acts as an anti-channeling factor to favor intermolecular Tn10 transposition and dissemination. J Mol Biol 376:950–962

    Article  CAS  PubMed  Google Scholar 

  • Tosi LR, Beverley SM (2000) Cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 28:784–790

    Article  CAS  PubMed  Google Scholar 

  • Vigdal TJ, Kaufman CD, Izsvak Z, Voytas DF, Ivics Z (2002) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452

    Article  CAS  PubMed  Google Scholar 

  • Watkins S, van Pouderoyen G, Sixma TK (2004) Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA. Nucleic Acids Res 32:4306–4312

    Article  CAS  PubMed  Google Scholar 

  • West RB, Lieber MR (1998) The RAG-HMG1 complex enforces the 12/23 rule of V(D)J recombination specifically at the double-hairpin formation step. Mol Cell Biol 18:6408–6415

    CAS  PubMed  Google Scholar 

  • Whitfield CR, Wardle SJ, Haniford DB (2009) The global bacterial regulator H-NS promotes transpososome formation and transposition in the Tn5 system. Nucleic Acids Res 37:309–321

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Lee JY, Nowontny M (2006) Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol Cell 22:5–13

    Article  CAS  PubMed  Google Scholar 

  • Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208:299–318

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Lieber MR (2000) The nicking step in V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol Cell Biol 20:7914–7921

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Khare D, Heinemann U, Ivics Z (2003) The DNA-bending protein HMGB1 is a cellular cofactor of sleeping beauty transposition. Nucleic Acids Res 31:2313–2322

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL (2004) Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is funded by The European Commission (Project SyntheGene Delivery, No. 018716) and the Wellcome Trust. We would like to thank Dr. Yves Bigot for his help and his enthusiastic inspiration throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Chalmers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claeys Bouuaert, C., Chalmers, R.M. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 138, 473–484 (2010). https://doi.org/10.1007/s10709-009-9391-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9391-x

Keywords

Navigation