Skip to main content
Log in

Multiple interval mapping for gene expression QTL analysis

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

To find the correlations between genome-wide gene expression variations and sequence polymorphisms in inbred cross populations, we developed a statistical method to claim expression quantitative trait loci (eQTL) in a genome. The method is based on multiple interval mapping (MIM), a model selection procedure, and uses false discovery rate (FDR) to measure the statistical significance of the large number of eQTL. We compared our method with a similar procedure proposed by Storey et al. and found that our method can be more powerful. We identified the features in the two methods that resulted in different statistical powers for eQTL detection, and confirmed them by simulation. We organized our computational procedure in an R package which can estimate FDR for positive findings from similar model selection procedures. The R package, MIM-eQTL, can be found at http://www.statgen.ncsu.edu/~wzou/MIM.eQTL.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barton NH, Keightley PD et al (2002) Understanding quantitative genetic variation. Nat Rev Genet 3(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Basten C, Weir B, Zeng Z et al (2002) QTL Cartographer, Version 1.17. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  • Bing N, Hoeschele I (2005) Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 105:041103 (page genetics)

    Google Scholar 

  • Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. PNAS 102(5):1572–1577

    Article  PubMed  CAS  Google Scholar 

  • Brem R, Yvert G, Clinton R, Kruglyak L et al (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568):752–755

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP, de Haan G et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37(3):225–232

    Article  PubMed  CAS  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142(1):285–294

    PubMed  CAS  Google Scholar 

  • Efron B, Tibshirani R, Storey JD, Tusher V et al (2001) Empirical bayes analysis of a microarray experiment. J Am Stat Assoc 96(456):1151–1160

    Article  Google Scholar 

  • Ihmels J, Levy R, Barkai N et al (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22(1):86–92

    Article  PubMed  CAS  Google Scholar 

  • Kao C-H, Zeng Z-B, Teasdale RD et al (1999) Multiple interval mapping for quantitative trait loci. Genetics 152(3):1203–1216

    PubMed  CAS  Google Scholar 

  • Lander E, Botstein D et al (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185–199

    PubMed  CAS  Google Scholar 

  • Marchini J, Donnelly P, Cardon LR et al (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37(4):413–417

    Article  PubMed  CAS  Google Scholar 

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8(6):552–560

    PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH et al (2003). Genetics of gene expression surveyed in maize, mouse and man. Nature 422(6929):297–302

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–5

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Akey JM, Kruglyak L et al (2005) Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol 3(8):e267

    Article  PubMed  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JN, Mott R, Flint J et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38(8):879–87

    Article  PubMed  CAS  Google Scholar 

  • Wolfinger R, Gibson G, Wolfinger E, Bennett L, Hamadeh H, Bushel P, Afshari C, Paules R et al (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8(6):625–637

    Article  PubMed  CAS  Google Scholar 

  • Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L et al (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the rol e of transcription factors. Nat Genet 35(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z, Kao C, Basten C et al (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74(3):279–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors sincerely thank Dr. Leonid Kruglyak for the access of the wonderful yeast data set.

Funding

This work was partially supported by the USDA Cooperative State Research, Education and Extension Service, Grant Number 2005-00754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Bang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Zeng, ZB. Multiple interval mapping for gene expression QTL analysis. Genetica 137, 125–134 (2009). https://doi.org/10.1007/s10709-009-9365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9365-z

Keywords

Navigation