Skip to main content
Log in

Effects of genomic imprinting on quantitative traits

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Standard Mendelian genetic processes incorporate several symmetries, one of which is that the level of expression of a gene inherited from an organism’s mother is identical to the level should that gene have been inherited paternally. For a small number of loci in a variety of taxa, this symmetry does not hold; such genes are said to be “genomically imprinted” (or simply “imprinted”). The best known examples of imprinted loci come from mammals and angiosperms, although there are also cases from several insects and some data suggesting that imprinting exists in zebra fish. Imprinting means that reciprocal heterozygotes need not be, on average, phenotypically identical. When this difference is incorporated into the standard quantitative-genetic model for two alleles at a single locus, a number of standard expressions are altered in fundamental ways. Most importantly, in contrast to the case with euMendelian expression, the additive and dominance deviations are correlated. It would clearly be of interest to be able to separate imprinting effects from maternal genetic effects, but when the latter are added to the model, the well-known generalized least-squares approach to deriving breeding values cannot be applied. Distinguishing these two types of parent-of-origin effects is not a simple problem and requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alleman M, Doctor J (2000) Genomic imprinting in plants: Observations and evolutionary implications. Plant Mol Biol 43:147–161. doi:10.1023/A:1006419025155

    Article  PubMed  CAS  Google Scholar 

  • Anderson RJE, Spencer HG (1999) Population genetic models of genomic imprinting. I. Differential viability in the sexes and the analogy with genetic dominance. Genetics 153:1949–1958

    PubMed  CAS  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammals. Annu Rev Genet 31:493–525. doi:10.1146/annurev.genet.31.1.493

    Article  PubMed  CAS  Google Scholar 

  • Bohidar NR (1964) Derivation and estimation of variance and covariance components associated with covariance between relatives under sexlinked transmission. Biometrics 20:505–521. doi:10.2307/2528492

    Article  Google Scholar 

  • Carroll L (1865) Alice’s adventures in Wonderland. Macmillan, London

    Google Scholar 

  • Dai F, Weeks DE (2006) Ordered genotypes: an extended ITO method and a general formula for genetic covariance. Am J Hum Genet 78:1035–1045. doi:10.1086/504045

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859. doi:10.1016/0092-8674(91)90513-X

    Article  PubMed  CAS  Google Scholar 

  • de Koning D-J, Bovenhuis H, van Arendonk JAM (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931–938

    PubMed  Google Scholar 

  • de Vries AG, Kerr R, Tier B et al (1994) Gametic imprinting effects on rate and composition of pig growth. Theor Appl Genet 88:1037–1042

    Article  Google Scholar 

  • Dindot SV, Kent KC, Evers B et al (2004) Conservation of genomic imprinting at the XIST, IGF2, and GTL2 loci in the bovine. Mamm Genome 15:966–974

    Article  PubMed  CAS  Google Scholar 

  • Engellandt T, Tier B (2002) Genetic variances due to imprinted genes in cattle. J Anim Breed Genet 119:154–165

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, Essex

    Google Scholar 

  • Giannoukakis N, Deal C, Paquette J et al (1993) Parental genomic imprinting of the human IGF2 gene. Nature Genet 4:98–101

    Article  PubMed  CAS  Google Scholar 

  • Grossman M, Eisen EJ (1989) Inbreeding, coancestry, and covariance between relatives for X-chromosomal loci. J Hered 80:137–142

    PubMed  CAS  Google Scholar 

  • Hill WG, Keightley PD (1988) Interaction between molecular and quantitative genetics. In Korver S et al (eds) Advances in animal breeding. Proceedings of the world symposium in honour of Professor R. D. Politiek, organised by the Agricultural University, Wageningen, Netherlands, 11–14 September 1988. PUDOC, Wageningen, Netherlands, pp 41–55

  • James JW (1973) Covariances between relatives due to sex-linked genes. Biometrics 29:584–588

    Article  PubMed  CAS  Google Scholar 

  • Jeon J-T, Carlborg Ö, Törnsten A et al (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158

    Article  PubMed  CAS  Google Scholar 

  • Kempthorne O (1957) An introduction to genetic statistics. Wiley, New York

    Google Scholar 

  • Kermicle JL (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66:69–85

    PubMed  Google Scholar 

  • Killian JK, Nolan CM, Stewart N et al (2001a) Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool 291:205–212

    Article  PubMed  CAS  Google Scholar 

  • Killian JK, Nolan CM, Wylie AA et al (2001b) Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the quaternary. Hum Mol Genet 10:1721–1728

    Article  PubMed  CAS  Google Scholar 

  • Knott SA, Marklund L, Haley CS et al (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069–1080

    PubMed  CAS  Google Scholar 

  • Koski LB, Sasaki E, Roberts RD et al (2000) Monoalleleic transcription of the insulin-like growth factor-II gene (igf2) in chick embryos. Mol Reprod Dev 56:345–352

    Article  PubMed  CAS  Google Scholar 

  • Lawton BR, Sevigny L, Obergfell C et al (2005) Allelic expression of IGF2 in live-bearing, matrotrophic fishes. Dev Genes Evol 215:207–212

    Article  PubMed  CAS  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  PubMed  CAS  Google Scholar 

  • Liu F-H, Smith SM (2000) Estimating quantitative genetic parameters in haplodiploid organisms. Heredity 85:373–382

    Article  PubMed  CAS  Google Scholar 

  • Lloyd V (2000) Parental imprinting in Drosophila. Genetica 109:35–44

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass

    Google Scholar 

  • Martin CC, McGowan RA (1995) Parent-of-origin specific effects on the methylation of a transgene in the zebrafish, Danio rerio. Dev Genet 17:233–239

    Article  CAS  Google Scholar 

  • McGowan RA, Martin CC (1997) DNA methylation and genome imprinting in the zebrafish, Danio rerio: some evolutionary ramifications. Biochem Cell Biol 75:499–506

    Article  PubMed  CAS  Google Scholar 

  • McLaren RJ, Montgomery GW (1999) Genomic imprinting of the insulin-like growth factor 2 gene in sheep. Mamm Genome 10:588–591

    Article  PubMed  CAS  Google Scholar 

  • Monk D, Arnaud P, Apotolidou S et al (2006) Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 103:6623–6628

    Article  PubMed  CAS  Google Scholar 

  • Morison IM (2007) Catalogue of parent-of-origin effects. http://igc.otago.ac.nz/home.html

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  • Nezer C, Moreau L, Brouwers B et al (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156

    Article  PubMed  CAS  Google Scholar 

  • Nezer C, Collette C, Moreau L et al (2003) Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics 165:277–285

    PubMed  CAS  Google Scholar 

  • Normark BJ (2006) Perspective: maternal kin groups and the origins of asymmetric genetic systems—genomic imprinting, haplodiploidy, and parthenogenesis. Evolution 60:631–642

    PubMed  CAS  Google Scholar 

  • O’Neill MJ, Ingram RS, Vrana PB, Tilghman SM (2000) Allelic expression of IGF2 in marsupials and birds. Dev Gen Evol 210:18–20

    Article  Google Scholar 

  • Pearce GP, Spencer HG (1992) Population genetic models of genomic imprinting. Genetics 130:899–907

    PubMed  CAS  Google Scholar 

  • Pedone PV, Cosma MP, Ungaro P et al (1994) Parental imprinting of rat insulin-like growth-factor-II gene promoter is coordinately regulated. J Biol Chem 269:23970–23975

    PubMed  CAS  Google Scholar 

  • Reznick DN, Mateos N, Springer MS (2002) Independent origins and rapid evolution of the placenta in the fish genus Poeciliopsis. Science 298:1018–1020

    Article  PubMed  CAS  Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York

    Google Scholar 

  • Sakatani T, Wei M, Katoh M et al (2001) Epigenetic heterogeneity at imprinted loci in normal populations. Biochem Biophys Res Comm 283:1124–1130

    Article  PubMed  CAS  Google Scholar 

  • Santure AW, Spencer HG (2006) Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting. Genetics 173:2297–2316

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Bailey J et al (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Deveopment 125:3329–3341

    CAS  Google Scholar 

  • Spencer HG (1997) Mutation-selection balance under genomic imprinting at an autosomal locus. Genetics 147:281–287

    PubMed  CAS  Google Scholar 

  • Spencer HG (2000) Population genetics and evolution of genomic imprinting. Annu Rev Genet 34:457–477

    Article  PubMed  CAS  Google Scholar 

  • Spencer HG (2002) The correlation between relatives on the supposition of genomic imprinting. Genetics 161:411–417

    PubMed  CAS  Google Scholar 

  • Spencer HG, Barnett JA (1996) Mutation-selection balance at a modifier-of-imprinting locus. Genetics 144:361–367

    PubMed  CAS  Google Scholar 

  • Spencer HG, Williams MJM (1995) Failure of imprinting at IGF–2: Two models of mutation-selection balance. Am J Hum Genet 56:434–437

    PubMed  CAS  Google Scholar 

  • Spencer HG, Dorn T, LoFaro T (2006) Population models of genomic imprinting. II. Maternal and fertility selection. Genetics 173:2391–2398

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Renfree MB, Pask AJ et al (2005) Genomic imprinting of IGF2, p57 KIP2 and PEG1/MEST in a marsupial, the tammar wallaby. Mech Dev 122:213–222

    Article  PubMed  CAS  Google Scholar 

  • Ubeda F, Haig D (2004) Sex-specific meiotic drive and selection at an imprinted locus. Genetics 167:2083–2095

    Article  PubMed  Google Scholar 

  • Vrana PB, Guan XJ, Ingram RS, Tilghman SM (1998) Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 20:362–365

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Goodyer CG, Deal C, Polychronakos C (1993) Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Comm 197:747–754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Bruce Weir and Bill Hill for the invitation to write this review and Anna Santure for her accurate and intricate work on elucidating the interaction between maternal genetic and imprinting effects. Andrew Clark, Marc Feldman, Ian Morison and Tony Weisstein also provided helpful discussions over several years and Bruce Tier pointed out several useful references. This work was supported by the New Zealand National Research Centre for Growth and Development and the Marsden Fund of the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamish G. Spencer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spencer, H.G. Effects of genomic imprinting on quantitative traits. Genetica 136, 285–293 (2009). https://doi.org/10.1007/s10709-008-9300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9300-8

Keywords

Navigation