Skip to main content
Log in

Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Rumex papillaris Boiss, & Reut., an Iberian endemic, belongs to the section Acetosa of the genus Rumex whose main representative is R. acetosa L., a species intensively studied in relation to sex-chromosome evolution. Here, we characterize cytogenetically the chromosomal complement of R. papillaris in an effort to enhance future comparative genomic approaches and to better our understanding of sex chromosome structure in plants. Rumex papillaris, as is common in this group, is a dioecious species characterized by the presence of a multiple sex chromosome system (with females 2n = 12 + XX and males 2n = 12 + XY1Y2). Except for the X chromosome both Y chromosomes are the longest in the karyotype and appear heterochromatic due to the accumulation of at least two satellite DNA families, RAE180 and RAYSI. Each chromosome of pair VI has an additional major heterochromatin block at the distal region of the short arm. These supernumerary heterochromatic blocks are occupied by RAE730 satellite DNA family. The Y-related RAE180 family is also present in an additional minor autosomal locus. Our comparative study of the chromosomal organization of the different satellite-DNA sequences in XX/XY and XX/XY1Y2Rumex species demonstrates that of active mechanisms of heterochromatin amplification occurred and were accompanied by chromosomal rearrangements giving rise to the multiple XX/XY1Y2 chromosome systems observed in Rumex. Additionally, Y1 and Y2 chromosomes have undergone further rearrangements leading to differential patterns of Y-heterochromatin distribution between Rumex species with multiple sex chromosome systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:

Adenosine

bp:

Base pair(s)

DAPI:

4′,6-diamidino-2-phenylindole

dNTP:

Deoxyribonucleoside triphosphate

EDTA:

Ethylenediaminetetraacetic acid

h:

Hour(s)

ng:

Nanogram(s)

ml:

Milliliter(s)

mya:

Million years ago

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulfate

SSC:

Saline–sodium citrate

T:

Thymidine

References

  • Ainsworth CC, Lu J, Winfield M et al (1999) Sex determination by X: autosome dosage: Rumex acetosa (sorrel). In: Ainsworth CC (ed) Sex determination in plants. BIOS Scientific Publishers Limited, pp 124–136

  • Charlesworth B (1996) The evolution of chromosomal sex determination and dosage compensation. Curr Biol 6:149–162

    Article  PubMed  CAS  Google Scholar 

  • Cuñado N, Navajas-Pérez R, de la Herrán R et al (2007) The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosome Res 15:825–833

    Article  PubMed  CAS  Google Scholar 

  • Degraeve N (1976) Contribution à l’étude cytotaxonomique des Rumex. IV Le genre Acetosa Mill. Cellule 71:231–240

    Google Scholar 

  • Kihara H, Ono T (1923) Cytological studies on Rumex L. I. Chromosomes of Rumex acetosa L. Bot Mag Tokyo 37:84–90

    Google Scholar 

  • Koch M, Haubold AB, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  • Kuroki Y (1987) Karyotype variation and heterochromatin in Rumex acetosa. Plant Chromosome Res 1987. Nishiki Print Co, Ltd, Hiroshima, Japan, pp 227–230

  • Kuroki Y, Yokohama A, Iwatsubo Y (1994) Fluorescent chromosome banding in Rumex montanus (Polygonaceae). Kromosomo 74:2591–2597

    Google Scholar 

  • Lengerova M, Vyskot B (2001) Sex chromatin and nucleolar analyses in Rumex acetosa L. Protoplasma 217:147–153

    Article  PubMed  CAS  Google Scholar 

  • López González G (1990) Género Rumex L. In: Castroviejo S, Laínz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L (eds) Flora Iberica, vol 2. CSIC, Real Jardín Botánico de Madrid, Madrid, Spain, pp 595–634

    Google Scholar 

  • Löve Á (1944) Cytogenetic studies on Rumex subgenus acetosella. Hereditas 30:1–136

    Article  Google Scholar 

  • Löve Á, Kapoor B (1967) A chromosome atlas of the collective genus Rumex. Cytologia 32:320–342

    Google Scholar 

  • Mariotti B, Navajas-Pérez R, Lozano R et al (2006) Cloning and characterisation of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa. Genome 49:114–121

    PubMed  CAS  Google Scholar 

  • Mosiolek M, Pasierbek P, Malarz J et al (2005) Rumex acetosa Y chromosomes: constitutive or facultative heterochromatin? Folia Histochem Cytobiol 43:161–167

    PubMed  Google Scholar 

  • Navajas-Pérez R, de la Herrán R, López González G et al (2005a) The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol Biol Evol 22:1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Navajas-Pérez R, de la Herrán R, Jamilena M et al (2005b) Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 60:391–399

    Article  PubMed  CAS  Google Scholar 

  • Navajas-Pérez R, Schwarzacher T, de la Herrán R et al (2006) The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368:61–71

    Article  PubMed  CAS  Google Scholar 

  • Nicolas M, Marais G, Hykelova V et al (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:47–56

    Article  CAS  Google Scholar 

  • Rechinger KH Jr (1964) The genus Rumex L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 1. Cambridge University Press, Cambridge, UK, pp 82–89

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Ruiz Rejón M (2004) Sex chromosomes in plants. In: Goodman RM (ed) Encyclopedia of plant and crop sciences, vol 4. Dekker Agropedia, Marcel Dekker, New York, pp 1148–1151

    Google Scholar 

  • Ruiz Rejón C, Jamilena M, Garrido-Ramos MA et al (1994) Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 72:209–215

    Article  Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes and in situ hybridization. Genome 46:953–962

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific Publishers Limited, Oxford, UK

    Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266–270

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (2000a) Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res 8:229–236

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (2000b) Molecular cytogenetic analysis of supernumerary heterochromatic segments in Rumex acetosa. Genome 43:391–397

    Article  PubMed  CAS  Google Scholar 

  • Smith BW (1964) The evolving karyotype of Rumex hastatulus. Evolution 18:93–104

    Article  Google Scholar 

  • Smith BW (1968) Cytogeography and cytotaxonomic relationships of Rumex paucifolius. Am J Bot 55:673–683

    Article  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    Article  PubMed  CAS  Google Scholar 

  • Steinemann M, Steinemann S (1997) The enigma of the Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the neo-Y chromosome of Drosophila miranda. Genetics 145:261–266

    PubMed  CAS  Google Scholar 

  • Wilby AS, Parker JS (1988a) The supernumerary segment systems of Rumex acetosa. Heredity 60:109–117

    Article  Google Scholar 

  • Wilby AS, Parker JS (1988b) Recurrent patterns of chromosome variation in a species group. Heredity 61:55–62

    Article  Google Scholar 

  • Yu Q, Hou S, Feltus FA et al (2008a) Low X/Y divergence in four pairs of papaya sex-linked genes. Plant J 53:124–132

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Navajas-Pérez R, Tong E et al (2008b) Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop Plant Biol. doi: 10.1007/s12042-007-9005-7

Download references

Acknowledgements

We thank Dr John Bailey, University of Leicester, for helpful discussions and checking the English of the manuscript. This work was supported by grant CGL2006-00444/BOS awarded by the Ministerio de Educación y Ciencia, Spain. We are deeply indebted to the Parque Natural de la Sierra de Baza in Granada (Spain), for kindly providing the material analyzed in this paper. R.N.P. is a Fulbright postdoctoral scholar supported by grant FU-2006-0675 of Spanish M.E.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Navajas-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navajas-Pérez, R., Schwarzacher, T., Rejón, M.R. et al. Molecular cytogenetic characterization of Rumex papillaris, a dioecious plant with an XX/XY1Y2 sex chromosome system. Genetica 135, 87–93 (2009). https://doi.org/10.1007/s10709-008-9261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9261-y

Keywords

Navigation