Skip to main content
Log in

Genetic differentiation and history of populations of the Italian treefrog Hyla intermedia: lack of concordance between mitochondrial and nuclear markers

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The genetic differentiation among 33 populations of the Italian treefrog, Hyla intermedia (Anura: Hylidae), was investigated using both biparentally (23 allozyme loci) and maternally (partial mitochondrial cytochrome b gene) inherited markers. Two main population groups were evidenced by both markers, located north and south of the northern Apennines. However, the pattern of differentiation between these two groups was much less pronounced at allozymes than at mtDNA, leading to gene flow estimates that were 25 times lower at mitochondrial than at nuclear level. Also, the mtDNA divergence between the two groups was particularly marked for two cospecific lineages of anuran amphibians (the P-distance being on average 9.04%), while their average genetic distance at allozymes was comparatively low (D NEI = 0.07). This contrasting pattern of nuclear versus mitochondrial genetic variation is discussed in the context of: (1) marker specific selection, (2) secondary contact and sex-biased gene flow and (3) ancestral polymorphism and colonization from north to south. Finally we emphasize how, for population genetic studies, the use of multiple markers having distinct evolutionary properties can help unravel the existence of more complex evolutionary histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amorosi A, Colalongo ML, Fusco F (1999) Glacio-eustatic control of continental shallow marine cyclicity from late Quaternary deposits of the southeastern Pò plain, northern Italy. Quat Res 52:1–13

    Article  Google Scholar 

  • Andolfatto P (2001) Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev 11:635–641

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Monteforte M, Blanc F, Bonhomme F (2003) Evidence for male-biased effective sex ratio and recent step-by-step colonization in the bivalve Pinctada mazatlanica. J Evol Biol 16:790–796

    Article  PubMed  CAS  Google Scholar 

  • Avise JC, Aquadro CF (1982) A comparative summary of genetic distances in the vertebrates. Evol Biol 15:151–185

    Google Scholar 

  • Avise JC, Neigel J, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Ayala FJ, Powell JR, Tracey ML, Mourão CA, Pérez-Salas S (1972) Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70:113–139

    PubMed  CAS  Google Scholar 

  • Baer CF (1999) Among-locus variation in Fst: fish, allozymes and the Lewontin-Krakauer test revisited. Genetics 152:653–659

    PubMed  CAS  Google Scholar 

  • Baker CS, Megrano-Gonzalez L, Calambokidis J, Perry A, Pichler F, Rosenbaum H, Straley JM, Urban-Ramirez J, Yamaguchi M, Von-Ziegesar O (1998). Population structure of nuclear and mitochondrial DNA variation among humpback whales in the North Pacific. Mol Ecol 7:695–707

    Article  PubMed  CAS  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Birky CW Jr, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    PubMed  Google Scholar 

  • Birky CW Jr, Walsh JB (1988) Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci USA 85:6414–6418

    Article  PubMed  CAS  Google Scholar 

  • Borkin LJ (1999) Distribution of amphibians in North Africa, Europe, Western Asia, and the Former Soviet Union. In: Duellmann WE (ed) Patterns of distribution of amphibians: a global perspective. The Johns Hopkins University Press, Baltimore, MD, pp 329–420

    Google Scholar 

  • Brewer GJ, Sing CF (1970) An introduction to isozyme techniques. Academic Press, New York, London

    Google Scholar 

  • Broughton RE, Harrison RG (2003) Nuclear gene genealogies reveal historical, demographic, and selective factors associated with speciation in field crickets. Genetics 163:1389–1401

    PubMed  CAS  Google Scholar 

  • Canestrelli D, Cimmaruta R, Costantini V, Nascetti G (2006) Genetic diversity and phylogeography of the Apennine yellow-bellied toad Bombina pachypus, with implications for conservation. Mol Ecol (in press)

  • Cattani L (2003) Considerazioni floristiche sull’evoluzione degli ambienti. In: Guidi A, Piperno M (eds) Italia preistorica. Edizioni La Terza, Italy, pp 46–67

    Google Scholar 

  • Charlesworth B (1998) Measures of divergence between populations and the effect of forces that reduce variability. Mol Biol Evol 15:538–543

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303

    PubMed  CAS  Google Scholar 

  • Cherty LM, Case SM, Wilson AC (1978) Frog perspective on the morphological difference between humans and chimpanzees. Science 200:209–211

    Article  PubMed  CAS  Google Scholar 

  • Cremaschi M (2003) Mutamenti del clima nel Quaternario: le linee generali. In: Guidi A, Piperno M (eds) Italia preistorica. Edizioni La Terza, Italy, pp 3–15

    Google Scholar 

  • Cremaschi M (2003b) La penisola italiana nel Quaternario: aspetti geologici e geoarcheologici. In: Guidi A, Piperno M (eds) Italia preistorica. Edizioni La Terza, Italy, pp 15–39

    Google Scholar 

  • Crochet PA, Chen JZ, Pons JM, Lebreton JD, Hebert PDN, Bonhomme F (2003) Genetic differentiation at nuclear and mitochondrial loci among large white-headed gulls: sex biased interspecific gene flow? Evolution 57:2865–2878

    PubMed  CAS  Google Scholar 

  • Delfino M, Bailon S (2000) Early Pleistocene herpetofauna from Cava Dell’Erba and Cava Pirro (Apulia, Southern Italy). Herp J 10:95–110

    Google Scholar 

  • Di Giovanni MV, Vlach MR, Giangiuliani G, Goretti E, Torricelli R (1998) Genetic analysis of the species of Sigara s. str. (Heteroptera, Corixidae) in the Italian Peninsula. Ital J Zool 65:393–397

    Article  Google Scholar 

  • Dubois A (1995) The valid scientific name of the Italian treefrog, with comments on the status of some early scientific names of Amphibia Anura, and on some articles of the Code concerning secondary homonyms. Dumerilia 2:55–71

    Google Scholar 

  • Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci USA 101:975–979

    Article  PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (1999) A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear dna variation. Mol Biol Evol 16:1003–1005

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) Phylogeny inference package (PHYLIP) Version 3.5c. University of Washington, Seattle

    Google Scholar 

  • Ferguson JWH (2002) On the use of genetic divergence for identifying species. Biol J Linn Soc 75:509–516

    Article  Google Scholar 

  • Giraudi C (2004) The Apennine glaciations in Italy. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, part I: Europe. Developments in quaternary science, vol 2a. Elsevier Science, Amsterdam, pp 215–224

    Google Scholar 

  • Goudet J (1999) PCAGEN, a computer package, which performs principal component analysis (PCA) on gene frequency data. Available at http://www2.unil.ch/izea/softwares/pcagen.html

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (Version 2.9.3). Available at http://www.unil.ch/izea/softwares/fstat.html

  • Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Hudson RD, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56:1557–1565

    PubMed  Google Scholar 

  • Hare MP, Avise JC (1998) Population structure in the American oyster as inferred by nuclear gene genealogies. Mol Biol Evol 15:119–128

    PubMed  CAS  Google Scholar 

  • Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706

    Article  Google Scholar 

  • Harris H (1966) Enzyme polymorphism in man. Proc R Soc Lond B 164:298–310

    Article  PubMed  CAS  Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland Publishing Company Inc., Amsterdam

    Google Scholar 

  • Helbig AJ, Salomon M, Bensch S, Seibold I (2001) Male-biased gene flow across an avian hybrid zone: evidence from mitochondrial and microsatellite DNA. J Evol Biol 14:277–287

    Article  CAS  Google Scholar 

  • Hoelzer GA (1997) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 51:622–626

    Article  Google Scholar 

  • Jehle R, Arntzen JW (2002) Microsatellite markers in amphibian conservation genetics. Herp J 12:1–9

    Google Scholar 

  • Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T, Nishioka M (1977) Reproductive biology of Japanese anurans. In: Tylor DH, Guttman SI (eds) Reproductive biology of amphibians. Plenum Press, New York, pp 103–139

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Lampert KP, Rand AS, Mueller UG, Ryan MJ (2003) Fine-scale genetic pattern and evidence for sex-biased dispersal in the tungara frog, Physalaemus pustulosus. Mol Ecol 12:3325–3334

    Article  PubMed  CAS  Google Scholar 

  • Lanza B (1983) Anfibi, Rettili. Guide per il riconoscimento delle specie animali delle acque interne italiane. CNR, Italy

    Google Scholar 

  • Lee JE, Yang DE, Kim YR, Lee H, Lee HI, Yang SY, Lee HY (1999) Genetic relationships of Korean treefrogs (Amphibia; Hylidae) based on mitochondrial cytochrome b and 12S rRNA genes. Korean J Biol Sci 3:295–301

    CAS  Google Scholar 

  • Lee MSY (2003) Species concepts and species reality: salvaging a Linnean rank. J Evol Biol 16:179–188

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195

    PubMed  CAS  Google Scholar 

  • Marsh DM, Trenham PC (2000) Metapopulation dynamics and amphibian conservation. Cons Biol 15:40–49

    Article  Google Scholar 

  • Martínez-Solano I, Gonçalves H, Arntzen JW, García-París M (2004) Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: Alytes). J Biogeog 31:603–618

    Google Scholar 

  • Maynard Smith J, Haigh J (1974) The hitchhiking effect of a favorable gene. Genet Res 23:23–35

    Article  Google Scholar 

  • Mazzotti S, Caramori G, Barbieri C (1999) Atlante degli Anfibi e dei Rettili dell’Emilia-Romagna. Quad Staz Ecol Civ Mus Stor Nat Ferrara 12:121

    Google Scholar 

  • Miola A, Albanese D, Valentini G, Corain L (2003) Pollen data for a biostratigraphy of LGM in the Venetian Pò plain. Ital J Quat Sci 16:21–25

    Google Scholar 

  • Monsen KJ, Blouin MS (2003) Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance. Mol Ecol 12:3275–3286

    Article  PubMed  CAS  Google Scholar 

  • Montuire S, Marcolini F (2002) Palaeoenvironmental significance of the mammalian faunas of Italy since the Pliocene. J Quat Sci 17:87–96

    Article  Google Scholar 

  • Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nucelar-gene trees. Evolution 49:718–726

    Article  Google Scholar 

  • Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within Ensatina eschscholtzi complex confirm the ring species interpretation. Syst Zool 41:273–291

    Google Scholar 

  • Nascetti G, Capula M, Lanza M, Bullini L (1985) Ricerche elettroforetiche su anfibi della regione mediterranea: aspetti tassonomici ed evolutivi. Riassunti del IV congresso associazione Ghigi, p 45

  • Nascetti G, Lanza B, Bullini L (1995) Genetic data for the specific status of the Italian treefrog (Amphibia: Anura: Hylidae). Amphib Reptil 16:215–227

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 83:583–589

    Google Scholar 

  • Neigel JE (2002). Is F ST obsolete? Cons Gen 3:167–173

    Article  CAS  Google Scholar 

  • Neigel JE, Avise AC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin K, Nevo E (eds) Evolutionary processes and theory. Academic Press, New York, pp 515–534

    Google Scholar 

  • Paillette M (1967) Valeur taxonomique des émissions sonores chez les Hyla (Amphibiens, Anoures) de la faune française. CR Acad Sci Paris sér D 264:1626–1628

    CAS  Google Scholar 

  • Palumbi SR, Baker CS (1994) Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435

    PubMed  CAS  Google Scholar 

  • Piel WH, Nutt KJ (2000) One species or several? Discordant patterns of geographic variation between allozymes and mtDNA sequences among spiders in the genus Metepeira (Araneae: Araneidae). Mol Phylogenet Evol 15:414–418

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Poulik MD (1957) Starch gel electrophoresis in a discontinuous system of buffers. Nature 180:1477

    Article  PubMed  CAS  Google Scholar 

  • Ravazzi C, Strick MR (1995) Vegetation change in a climatic cycle of Early Pleistocene age in the Leffe Basin (Northern Italy). Palaeogeog Palaeoclim Palaeoecol 117:105–122

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richards CM, Moore WS (1996) A phylogeny for the African treefrog family Hyperoliidae based on mitochondrial DNA. Mol Phylogenet Evol 5:522–532

    Article  PubMed  CAS  Google Scholar 

  • Ripplinger JI, Wagner RS (2004) Phylogeography of northern populations of the pacific treefrog, Pseudacris regilla. Northwest Nat 85:118–125

    Google Scholar 

  • Roe BA, Ma DP, Wilson RK, Wong JFH (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774

    PubMed  CAS  Google Scholar 

  • Ron SR, Santos JC, Cannatella DC (2006) Phylogeny of the túngara frog genus Engystomops (=Physalaemus pustulosus species group; Anura: Leptodactylidae). Mol Phylogenet Evol 39:392–403

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schierup MH, Vekemans X, Charlesworth D (2000) The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet Res Camb 76:51–62

    CAS  Google Scholar 

  • Schlotterer C (2003) Hitchhiking mapping—functional genomics from the population genetics perspective. Trends Genet 19:32–38

    Article  PubMed  CAS  Google Scholar 

  • Schneider H (1974) Structure of mating calls and relationship of the European tree frogs (Hylidae, Anura). Oecologia 14:99–110

    Article  Google Scholar 

  • Schreiber E (1875) Herpetologia europaea. Druck and Verlag von Friedrich Vieweg and Sohn, Braunschweig, 639 p, Chap. XVII

  • Selander RK, Smith MH, Yang SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse. In: Studies in genetics IV, vol 7103. University of Texas Publications, TX, pp 49–90

  • Shaw KL (2002) Conflict between mitochondrial and nuclear DNA phylogenies of a recent species radiation: what mitochondrial reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127

    Article  PubMed  CAS  Google Scholar 

  • Shaw CR, Prasad R (1970) Starch gel electrophoresis of enzymes - a compilation of recipes. Biochem Genet 4:297–320

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M, Wiehe T (1998) Genetic hitch-hiking in a subdivided population. Genet Res 71:155–160

    Article  PubMed  CAS  Google Scholar 

  • Stefani F, Galli P, Crosa G, Zaccara S, Calamari D (2004) Alpine and Apennine barriers determining the differentiation of the rudd (Scardinius erythrophthalmus L.) in the Italian peninsula. Ecol Fresh Fish 13:168–175

    Article  Google Scholar 

  • Swofford DL, Selander RB (1999) BIOSYS-2: a computer program for the analysis of allelic variation in population genetics and biochemical systematics (Release 2.0). University of Illinois, Urbana, Champaign, IL

    Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods). Beta, Version 4.0b 10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Szymura JM, Spolsky C, Uzzell T (1985) Concordant change in mitochondrial and nuclear genes in a hybrid zone between two frog species (genus Bombina). Experientia 41:1469–1470

    Article  CAS  Google Scholar 

  • Tajima F (1993) Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135:599–607

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Ting TC, Tsaur SC, Wu CI (2000) The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc Natl Acad Sci USA 97:5313–5316

    Article  PubMed  CAS  Google Scholar 

  • Veith M (1996) Molecular markers and species delimitation: examples from the European batrachofauna. Amphib Reptil 17:303–314

    Google Scholar 

  • Weigt LA, Crawford AJ, Rand AS, Ryan MJ (2005) Biogeography of the tungara frog, Physalaemus pustulosus: a molecular perspective. Mol Ecol 14:3857–3876

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST not equal 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–353

    Google Scholar 

  • Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Fred Janzen for useful suggestions, which greatly improved a previous version of the manuscript. Sincere thanks are also due to Luciano Bullini, Roberta Cimmaruta and Francesca Zangari for useful discussions and suggestions, to Claudio Bagnoli and Paola Bellini for kind help during field sampling and manuscript preparation and to Mark Eltelton who reviewed the English. This work was funded by MIUR (Italian Ministry of University and of Scientific and Technological Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Canestrelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canestrelli, D., Verardi, A. & Nascetti, G. Genetic differentiation and history of populations of the Italian treefrog Hyla intermedia: lack of concordance between mitochondrial and nuclear markers. Genetica 130, 241–255 (2007). https://doi.org/10.1007/s10709-006-9102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9102-9

Keywords

Navigation