Skip to main content
Log in

Maternal expression increases the rate of bicoid evolution by relaxing selective constraint

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Population genetic theory predicts that maternal effect genes will evolve differently than genes expressed in both sexes because selection is only half as effective on autosomal genes expressed in one sex but not the other. Here, we use sequences of the tandem gene duplicates, bicoid (bcd) and zerknüllt (zen), to test the prediction that, with similar coefficients of purifying selection, a maternal effect gene evolves more rapidly than a zygotic gene because of this reduction in selective constraint. We find that the maternal effect gene, bcd, is evolving more rapidly than zygotically expressed, zen, providing the first direct confirmation of this prediction of maternal effect theory from molecular evidence. Our results extend current explanations for the accelerated rate of bcd evolution by providing an evolutionary mechanism, relaxed selective constraint, that allows bcd the evolutionary flexibility to escape the typical functional constraints of early developmental genes. We discuss general implications of our findings for the role of maternal effect genes in early developmental patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker MS, Demuth JP, Wade MJ (2005) Maternal expression relaxes constraint on innovation of the anterior determinant, bicoid. PLoS Genetics 1:e57

    Article  PubMed  Google Scholar 

  • Binida-Emons ORP, Jeffrey JE, Richardson MK (2003) Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development. Proc R Soc Lond B 270:341–346

    Article  Google Scholar 

  • Dearden P, Akam M (1999) Developmental evolution: axial patterning in insects. Curr Biol 9:R591–R594

    Article  PubMed  CAS  Google Scholar 

  • Dearden P, Grbic M, Falciani F, Akam M (2000) Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol Dev 2:261–270

    Article  PubMed  CAS  Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression—a basis for the stability of a vertebrate bauplan and the evolution of morphologies through heterochrony. Development Suppl. S:135–142

  • Falciani F, Hausdorf B, Schroder R, Akam M, Tautz D, Denell R, Brown S (1996) Class 3 Hox genes in insects and the origin of zen. Proc Natl Acad Sci USA 93:8479–8484

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

    Google Scholar 

  • Hughes CL, Kaufman TC (2002a) Exploring the myriapod body plan: expression patterns of the ten Hox genes in a centipede. Development 129:1225–1238

    CAS  Google Scholar 

  • Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713–719

    PubMed  CAS  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Mousseau TA, Fox CW (eds) (1998) Maternal effects as adaptations. Oxford University Press, NY

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, NY

    Google Scholar 

  • Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625

    Article  PubMed  Google Scholar 

  • Stauber M, Jackle H, Schmidt-Ott U (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci USA 96:3786–3789

    Article  PubMed  CAS  Google Scholar 

  • Stauber M, Taubert H, Schmidt-Ott U (2000) Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). Proc Natl Acad Sci USA 97:10844–10849

    Article  PubMed  CAS  Google Scholar 

  • Stauber M, Prell A, Schmidt-Ott U (2002) A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-cyclorrhaphan flies. Proc Natl Acad Sci USA 99:274–279

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plenwniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wade MJ (1998) The evolutionary genetics of maternal effects. In: Mosseau T, Fox C (eds) Maternal effects. Oxford University Press, Oxford, pp 5–21

    Google Scholar 

  • Wade MJ (2002) A gene’s eye view of epistasis, selection and speciation. J Evol Biol 15:337–346

    Article  CAS  Google Scholar 

  • Wade MJ (2002) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, NY, pp 5–21

    Google Scholar 

  • Wade MJ, Beeman RW (1994) The population-dynamics of maternal-effect selfish genes. Genetics 138:1309–1314

    PubMed  CAS  Google Scholar 

  • Whitlock MC, Wade MJ (1995) Speciation—founder events and their effects on X-linked and autosomal genes. Am Natur 145:676–685

    Article  Google Scholar 

  • Wolpert L, Beddington R, Jessell T, Lawrence P, Meyerowitz E, Smith J (2002) Principles of development. Oxford University Press, NY

    Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations: vol 2, The theory of gene frequencies. The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 95:3708–3713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our thanks to: C. Hughes, M. Lynch, and E. Brodie III, for insightful critiques and discussion of the manuscript. JPD was supported by a National Science Foundation—Integrated Graduate Education and Research Traineeship in Evolution, Development, and Genomics #9972830, and Doctoral Dissertation Improvement Grant #0206628. MJW and JPD were supported by the National Institutes of Health under Grant GM065414-01A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery P. Demuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demuth, J.P., Wade, M.J. Maternal expression increases the rate of bicoid evolution by relaxing selective constraint. Genetica 129, 37–43 (2007). https://doi.org/10.1007/s10709-006-0031-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0031-4

Keywords

Navigation