Skip to main content

Advertisement

Log in

Detecting natural selection on cis-regulatory DNA

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Changes in transcriptional regulation play an important role in the genetic basis for evolutionary change. Here I review a growing body of literature that seeks to determine the forces governing the non-coding regulatory sequences underlying these changes. I address the challenges present in studying natural selection without the familiar structure and regularity of protein-coding sequences, but show that most tests of neutrality that have been used for coding regions are applicable to non-coding regions, albeit with some caveats. While some experimental investment is necessary to identify heritable regulatory variation, the most basic inferences about selection require very little functional information. A growing body of research on cis-regulatory variation has uncovered all the forms of selection common to coding regions, in addition to novel forms of selection. An emerging pattern seems to be the ubiquity of local adaptation and balancing selection, possibly due to the greater freedom organisms have to fine-tune gene expression without changing protein function. It is clear from multiple single locus and whole genome studies of non-coding regulatory DNA that the effects of natural selection reach far beyond the start and stop codons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12:1805–1814

    PubMed  CAS  Google Scholar 

  • Andolfatto P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437(7062):1149–1153

    Google Scholar 

  • Aparicio S, Morrison A, Gould A, Gilthorpe J, Chaudhuri C et al. (1995) Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci USA 92:1684–1688

    PubMed  CAS  Google Scholar 

  • Bamshad MJ, Mummidi S, Gonzalez E, Ahuja SS, Dunn DM et al. (2002) A strong signature of balancing selection in the 5’ cis-regulatory region of CR5. Proc Natl Acad Sci USA 99:10539–10544

    PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626

    Google Scholar 

  • Beckers J, Duboule D (1998) Genetic analysis of a conserved sequence in the HoxD complex: regulatory redundancy or limitations of the transgenic approach? Dev Dyn 213:1–11

    PubMed  CAS  Google Scholar 

  • Benos PV, Bulyk ML, Stormo GD (2002) Additivity in protein–DNA interactions: how good an approximation is it? Nucleic Acids Res 30:4442–4451

    PubMed  CAS  Google Scholar 

  • Bergman CM, Kreitman M (2001) Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. Genome Res 11:1335–1345

    PubMed  CAS  Google Scholar 

  • Bersaglieri T, Drake J, Vanderploeg T, Sabeti PC, Reich DE et al. (2003) Signatures of strong positive selection at the lactase gene. Am J Hum Genet 73:188–188

    Google Scholar 

  • Bettencourt BR, Kim I, Hoffmann AA, Feder ME (2002) Response to natural and laboratory selection at the Drosophila hsp70 genes. Evolution 56:1796–1801

    PubMed  CAS  Google Scholar 

  • Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L et al. (1991) Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci USA 88:839–843

    PubMed  CAS  Google Scholar 

  • Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165:349–357

    PubMed  CAS  Google Scholar 

  • Bulyk ML, Gentalen E, Lockhart DJ, Church GM (1999) Quantifying DNA–protein interactions by double-stranded DNA arrays. Nat Biotechnol 17:573–577

    PubMed  CAS  Google Scholar 

  • Bulyk ML, Huang XH, Choo Y, Church GM (2001) Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci USA 98:7158–7163

    PubMed  CAS  Google Scholar 

  • Carey M, Smale ST (2000) Transcriptional regulation in eukaryotes: concepts, strategies, and techniques. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Carroll SB (2000) Endless forms: the evolution of gene regulation and morphological diversity. Cell 101:577–580

    PubMed  CAS  Google Scholar 

  • Cowell LG, Kepler TB, Janitz M, Lauster R, Mitchison NA (1998) The distribution of variation in regulatory gene segments, as present in MHC class II promoters. Genome Res 8:124–134

    PubMed  CAS  Google Scholar 

  • Crawford DL, Segal JA, Barnett JL (1999) Evolutionary analysis of TATA-less proximal promoter function. Mol Biol Evol 16:194–207

    PubMed  CAS  Google Scholar 

  • Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E et al. (2002) A single P450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256

    PubMed  CAS  Google Scholar 

  • Davidson EH (2001) Genomic regulatory systems: development and evolution. Academic Press, San Diego

    Google Scholar 

  • Depaulis F, Veuille M (1998) Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 15:1788–1790

    PubMed  CAS  Google Scholar 

  • Dermitzakis ET, Clark AG (2002) Evolution of transcription factor binding sites in mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19:1114–1121

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Emison ES, Mccallion AS, Kashuk CS, Bush RT, Grice E et al. (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434:857–863

    PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Fay JC, Wu CI (2001) The neutral theory in the genomic era. Curr Opin Genet Dev 11:642–646

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. The Clarendon, Oxford

    Google Scholar 

  • Frasch M, Chen XW, Lufkin T (1995) Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121:957–974

    PubMed  CAS  Google Scholar 

  • Frazer KA, Sheehan JB, Stokowski RP, Chen XY, Hosseini R et al. (2001) Evolutionarily conserved sequences on human chromosome 21. Genome Res 11:1651–1659

    PubMed  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Fullerton SM, Bartoszewicz A, Ybazeta G, Horikawa Y, Bell GI et al. (2002) Geographic and haplotype structure of candidate type 2 diabetes-susceptibility variants at the calpain-10 locus. Am J Hum Genet 70:1096–1106

    PubMed  CAS  Google Scholar 

  • Galas DJ, Schmitz A (1978) DNAase footprinting: simple method for detection of protein–DNA binding specificity. Nucleic Acids Res 5:3157–3170

    PubMed  CAS  Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, New York

    Google Scholar 

  • Hahn MW, Rausher MD, Cunningham CW (2002) Distinguishing between selection and population expansion in an experimental lineage of bacteriophage T7. Genetics 161:11–20

    PubMed  CAS  Google Scholar 

  • Hahn MW, Stajich JE, Wray GA (2003) The effects of selection against spurious transcription factor binding sites. Mol Biol Evol 20:901–906

    PubMed  CAS  Google Scholar 

  • Hahn MW, Rockman MV, Soranzo N, Goldstein DB, Wray GA (2004) Population genetic and phylogenetic evidence for positive selection on regulatory mutations at the Factor VII locus in humans. Genetics 167:867–877

    PubMed  CAS  Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Longman, New York

    Google Scholar 

  • Hamblin MT, Di Rienzo A (2000) Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet 66:1669–1679

    PubMed  CAS  Google Scholar 

  • Hamblin MT, Thompson EE, Di Rienzo A (2002) Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 70:369–383

    PubMed  Google Scholar 

  • Hardison RC (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16:369–372

    PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hough RB, Avivi A, Davis J, Joel A, Nevo E et al. (2002) Adaptive evolution of small heat shock protein/αB-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi. Proc Natl Acad Sci USA 99:8145–8150

    PubMed  CAS  Google Scholar 

  • Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ (1994) Evidence for positive selection in the superoxide dismutase (Sod) regions of Drosophila melanogaster. Genetics 136:1329–1340

    PubMed  CAS  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, Oxford

    Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class-I loci reveals overdominant selection. Nature 335:167–170

    PubMed  CAS  Google Scholar 

  • Humphries SE, Martin S, Cooper J, Miller G (2002) Interaction between smoking and the stromelysin-1 (MMP3) gene 5A/6A promoter polymorphism and risk of coronary heart disease in healthy men. Ann Hum Genet 66

  • Jenkins DL, Ortori CA, Brookfield JFY (1995) A test for adaptive change in DNA sequences controlling transcription. Proc R Soc Lond B 261:203–207

    CAS  Google Scholar 

  • Jordan IK, McDonald JF (1998) Interelement selection in the regulatory region of the copia retrotransposon. J Mol Evol 47:670–676

    PubMed  CAS  Google Scholar 

  • Karl SA, Avise JC (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256:100–102

    PubMed  CAS  Google Scholar 

  • Keightley PD, Gaffney DJ (2003) Functional constraints and frequency of deleterious mutations in noncoding DNA of rodents. Proc Natl Acad Sci USA 100:13402–13406

    PubMed  CAS  Google Scholar 

  • Kern AD, Jones CD, Begun DJ (2002) Genomic effects of nucleotide substitutions in Drosophila simulans. Genetics 162:1753–1761

    PubMed  CAS  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  CAS  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimura M, Ohta T (1971) Theoretical aspects of population genetics. Princeton University Press, Princeton

    Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    PubMed  CAS  Google Scholar 

  • Kohn MH, Fang S, Wu C-I (2004) Inference of positive and negative selection on the 5′ regulatory regions of Drosophila genes. Mol Biol Evol 21:374–383

    PubMed  CAS  Google Scholar 

  • Lewontin RC (1974) The genetic basis for evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of selective neutrality of polymorphisms. Genetics 74:175–195

    PubMed  CAS  Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Ludwig MZ, Kreitman M (1995) Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. Mol Biol Evol 12:1002–1011

    PubMed  CAS  Google Scholar 

  • Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403:564–567

    PubMed  CAS  Google Scholar 

  • Macdonald SJ, Long AD (2005) Prospects for identifying functional variation across the genome. Proc Natl Acad Sci USA 102:6614–6621

    PubMed  Google Scholar 

  • Makova KD, Ramsay M, Jenkins T, Li WH (2001) Human DNA sequence variation in a 6.6-kb region containing the melanocortin 1 receptor promoter. Genetics 158:1253–1268

    PubMed  CAS  Google Scholar 

  • Margarit E, Guillen A, Rebordosa C, Vidal-Taboada J, Sanchez M et al. (1998) Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals. Biochem Biophy Res Commun 245:370–377

    CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    PubMed  CAS  Google Scholar 

  • McGregor AP, Shaw PJ, Hancock JM, Bopp D, Hediger M et al. (2001) Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol Dev 3:397–407

    PubMed  CAS  Google Scholar 

  • Michalak P, Minkov I, Helin A, Lerman DN, Bettencourt BR et al. (2001) Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in “Evolution Canyon,” Israel. Proc Natl Acad Sci USA 98:13195–13200

    PubMed  CAS  Google Scholar 

  • Mitchison NA, Roes J (2002) Patterned variation in murine MHC promoters. Proc Natl Acad Sci USA 99:10561–10566

    PubMed  CAS  Google Scholar 

  • Moses K, Heberlein U, Ashburner M (1990) The Adh gene promoters of Drosophila melanogaster and Drosophila orena are functionally conserved and share features of sequence structure and nuclease-protected sites. Mol Cell Biol 10:539–548

    PubMed  CAS  Google Scholar 

  • Moses AM, Chiang DY, Kellis M, Lander ES, Eisen MB (2003) Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evol Biol 3

  • Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D et al. (2004) Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet 36:1331–1339

    PubMed  CAS  Google Scholar 

  • Nakajima T, Wooding S, Sakagami T, Emi M, Tokunaga K et al. (2004) Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am J Hum Genet 74:898–916

    PubMed  CAS  Google Scholar 

  • Nakayama EE, Meyer L, Iwamoto A, Persoz A, Nagai Y et al. (2002) Protective effect of interleukin-4 -589T polymorphism on human immunodeficiency virus type 1 disease progression: relationship with virus load. J Infect Dis 185:1183–1186

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86:641–647

    PubMed  CAS  Google Scholar 

  • Nurminsky DI, Nurminskaya MV, Deaguiar D, Hartl DL (1998) Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396:572–575

    PubMed  CAS  Google Scholar 

  • Odgers WA, Aquadro CF, Coppin CW, Healy MJ, Oakeshott JG (2002) Nucleotide polymorphism in the Est6 promoter, which is widespread in derived populations of Drosophila melanogaster, changes the level of Esterase 6 expressed in the male ejaculatory duct. Genetics 162:785–797

    PubMed  CAS  Google Scholar 

  • Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD (2002) Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics 160:1641–1650

    PubMed  CAS  Google Scholar 

  • Onyango P, Miller W, Lehoczky J, Leung CT, Birren B et al. (2000) Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res 10:1697–1710

    PubMed  CAS  Google Scholar 

  • Oota H, Pakstis AJ, Bonne-Tamir B, Goldman D, Grigorenko E et al. (2004) The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination. Ann Hum Genet 68:93–109

    PubMed  CAS  Google Scholar 

  • Plaza S, Saule S, Dozier C (1999) High conservation of cis-regulatory elements between quail and human for the Pax-6 gene. Dev Genes Evol 209:165–173

    PubMed  CAS  Google Scholar 

  • Rockman MV, Wray GA (2002) Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19:1991–2004

    PubMed  CAS  Google Scholar 

  • Rockman MV, Hahn MW, Soranzo N, Goldstein DB, Wray GA (2003) Positive selection on a human-specific transcription factor binding site regulating IL4 expression. Curr Biol 13:2118–2123

    PubMed  CAS  Google Scholar 

  • Rockman MV, Hahn MW, Soranzo N, Loisel DA, Goldstein DB, Wray GA (2004) Positive selection on MMP3 regulation has shaped heart disease risk. Curr Biol 14:1531–1539

    PubMed  CAS  Google Scholar 

  • Rockman MV, Hahn MW, Soranzo N, Zimprich F, Goldstein DB, Wray GA (2005) Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3:e387

    PubMed  Google Scholar 

  • Romano LA, Wray GA (2003) Conservation of Endo16 expression in sea urchins despite divergence in both cis and trans-acting components of transcriptional regulation. Development 130:4187–4199

    PubMed  CAS  Google Scholar 

  • Romey MC, Guittard C, Chazalette JP, Frossard P, Dawson KP et al. (1999) Complex allele [-102T>A+S549R(T>G)] is associated with milder forms of cystic fibrosis than allele S549R[T>G] alone. Hum Genet 105:145–150

    PubMed  CAS  Google Scholar 

  • Romey MC, Pallares-Ruiz N, Mange A, Mettling C, Peytavi R et al. (2000) A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression. J Biol Chem 275:3561–3567

    PubMed  CAS  Google Scholar 

  • Sabater-Lleal M, Soria JM, Bertranpetit J, Almasy L, Blangero J, Fontcuberta J, Calafell F (2006) Human F7 sequence is split into three deep clades that are related to FVII plasma levels. Hum Genet 118:741–751

    PubMed  CAS  Google Scholar 

  • Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ et al. (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837

    Google Scholar 

  • Sakagami T, Witherspoon DJ, Nakajima T, Jinnai N, Wooding S et al. (2004) Local adaptation and population differentiation at the interleukin 13 and interleukin 4 loci. Genes Immun 5:389–397

    PubMed  CAS  Google Scholar 

  • Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci USA 101:1626–1631

    PubMed  CAS  Google Scholar 

  • Schulte PM, Gomez-Chiarri M, Powers DA (1997) Structural and functional differences in the promoter and 5′ flanking region of Ldh-B within and between populations of the teleost Fundulus heteroclitus. Genetics 145:759–769

    PubMed  CAS  Google Scholar 

  • Shabalina SA, Kondrashov AS (1999) Pattern of selective constraint in C. elegans and C. briggsae genomes. Genet Res 74:23–30

    PubMed  CAS  Google Scholar 

  • Shabalina SA, Ogurtsov AY, Kondrashov VA, Kondrashov AS (2001) Selective constraint in intergenic regions of human and mouse genomes. Trends Genet 17:373–376

    PubMed  CAS  Google Scholar 

  • Shashikant CS, Kim CB, Borbely MA, Wang WCH, Ruddle FH (1998) Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element. Proc Natl Acad Sci USA 95:15446–15451

    PubMed  CAS  Google Scholar 

  • Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429

    PubMed  CAS  Google Scholar 

  • Slatkin M (2000) Allele age and a test for selection on rare alleles. Philos Trans R Soc Lond B Biol Sci 355:1663–1668

    PubMed  CAS  Google Scholar 

  • Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW et al. (1998) Dating the origin of the CCR5-Δ32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62:1507–1515

    PubMed  CAS  Google Scholar 

  • Stern DL (2000) Perspective: evolutionary developmental biology and the problem of variation. Evolution 54:1079–1091

    PubMed  CAS  Google Scholar 

  • Stone JR, Wray GA (2001) Rapid evolution of cis-regulatory sequences via local point mutations. Mol Biol Evol 18:1764–1770

    PubMed  CAS  Google Scholar 

  • Strobeck C (1987) Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117:149–153

    PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Takahashi A, Tsaur SC, Coyne JA, Wu CI (2001) The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci USA 98:3920–3925

    PubMed  CAS  Google Scholar 

  • Tamarina NA, Ludwig MZ, Richmond RC (1997) Divergent and conserved features in the spatial expression of the Drosophila pseudoobscura esterase-5B gene and the esterase-6 gene of Drosophila melanogaster. Proc Natl Acad Sci USA 94:7735–7741

    PubMed  CAS  Google Scholar 

  • Tan Z, Shon AM, Ober C (2005) Evidence of balancing selection at the HLA-G promoter region. Hum Mol Genet 14:3619–3628

    PubMed  CAS  Google Scholar 

  • Taylor MFJ, Shen Y, Kreitman ME (1995) A population genetic test of selection at the molecular level. Science 270:1497–1499

    PubMed  CAS  Google Scholar 

  • The International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Google Scholar 

  • Toomajian C, Ajioka RS, Jorde LB, Kushner JP, Kreitman M (2003) A method for detecting recent selection in the human genome from allele age estimates. Genetics 165:287–297

    PubMed  CAS  Google Scholar 

  • Tournamille C, Colin Y, Cartron JP, Le Van Kim C (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10:224–228

    PubMed  CAS  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72

    PubMed  Google Scholar 

  • Wallace B (1963) Genetic diversity, genetic uniformity, and heterosis. Can J Genet Cytol 5:239–253

    Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    PubMed  CAS  Google Scholar 

  • Watterson GA (1977) Heterosis or neutrality? Genetics 85:789–814

    PubMed  CAS  Google Scholar 

  • Wilson AC (1975) Evolutionary importance of gene regulation. Stadler Symp 7:117–134

    CAS  Google Scholar 

  • Wong WSW, Nielsen R (2004) Detecting selection in noncoding regions of nucleotide sequences. Genetics 167:949–958

    PubMed  CAS  Google Scholar 

  • Wooding SP, Watkins WS, Bamshad MJ, Dunn DM, Weiss RB et al. (2002) DNA sequence variation in a 3.7-kb noncoding sequence 5′ of the CYP1A2 gene: implications for human population history and natural selection. Am J Hum Genet 71:528–542

    PubMed  CAS  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M et al. (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    PubMed  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Wright S (1969) The theory of gene frequencies. The University of Chicago Press, Chicago

    Google Scholar 

  • Wu CY, Brennan MD (1993) Similar tissue-specific expression of the Adh genes from different Drosophila species is mediated by distinct arrangements of cis-acting sequences. Mol Gen Genet 240:58–64

    PubMed  CAS  Google Scholar 

  • Yang ZH, Bielawski JP (2000) Statistical methods for detecting molecular evolution. Trends Ecol Evol 15:496–503

    PubMed  Google Scholar 

  • Zuckerkandl E (1963) Perspectives in molecular anthropology. In: Washburn SL (ed) Classification and human evolution. Aldine, Chicago, pp. 243–272

    Google Scholar 

Download references

Acknowledgments

G. Wray, M. Rockman, D. Begun, D. Des Marais, A. Kern, S. Nuzhdin, M. Rausher, J. Stajich, N. Johnson, and two anonymous reviewers all gave constructive comments and criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M.W. Detecting natural selection on cis-regulatory DNA. Genetica 129, 7–18 (2007). https://doi.org/10.1007/s10709-006-0029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0029-y

Keywords

Navigation