Skip to main content
Log in

Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A set of Chinese muntjac (Muntiacus reevesi) chromosome-specific paints has been hybridized onto the metaphases of sika deer (Cervus nippon, CNI, 2n = 66), red deer (Cervus elaphus, CEL, 2n = 62) and tufted deer (Elaphodus cephalophus, ECE, 2n = 47). Thirty-three homologous autosomal segments were detected in genomes of sika deer and red deer, while 31 autosomal homologous segments were delineated in genome of tufted deer. The Chinese muntjac chromosome X probe painted to the whole X chromosome, and the chromosome Y probe gave signals on the Y chromosome as well as distal region of the X chromosome of each species. Our results confirmed that exclusive Robertsonian translocations have contributed to the karyotypic evolution of sika deer and red deer. In addition to Robertsonian translocation, tandem fusions have played a more important role in the karyotypic evolution of tufted deer. Different types of chromosomal rearrangements have led to great differences in the genome organization between cervinae and muntiacinae species. Our analysis testified that six chromosomal fissions in the proposed 2n = 58 ancestral pecoran karyotype led to the formation of 2n = 70 ancestral cervid karyotype and the deer karyotypes is more derived compare with those of bovid species. Combining previous cytogenetic and molecular systematic studies, we analyzed the genome phylogeny for 11 cervid species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMD:

Actinomycin D

BrdU:

5-bromodeoxyuridine

CCD:

charge coupled device

DAPI:

´46-diamidino-2-phenylindole

Dig:

digoxigenin

DMEM:

Dulbecco’s modified eagle’s medium

FISH:

fluorescence in situ hybridization

FITC:

fluorescein isothiocyanate

References

  • A. Bonnet S. Thevenon F. Claro M. Gantier H. Hayes (2001) ArticleTitleCytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping Chromosome Res. 9 673–687 Occurrence Handle11778690 Occurrence Handle1:CAS:528:DC%2BD3MXptlKqu7Y%3D Occurrence Handle10.1023/A:1012908508488

    Article  PubMed  CAS  Google Scholar 

  • A. Bonnet-Garnier F. Claro S. Thevenon M. Gantier H. Hayes (2003) ArticleTitleIdentification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species Chromosome Res. 11 649–663 Occurrence Handle14606627 Occurrence Handle1:CAS:528:DC%2BD3sXns1Cmsr8%3D Occurrence Handle10.1023/A:1025981508867

    Article  PubMed  CAS  Google Scholar 

  • G. Bouvrain D. Geraads Y. Jehenne (1989) ArticleTitleNew data relating to the classification of the Cervidae (Artiodactyla, Mammalia) Zool. Anz. 223 82–90

    Google Scholar 

  • J. Chi B. Fu W. Nie J. Wang A. Graphodatsky F. Yang (2005) ArticleTitleNew insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis) Cytogenet. Genome Res. 108 310–316 Occurrence Handle15627750 Occurrence Handle1:STN:280:DC%2BD2M%2FgtF2jtQ%3D%3D Occurrence Handle10.1159/000081520

    Article  PubMed  CAS  Google Scholar 

  • K. Chikuni Y. Mori T. Tabata M. Saito M. Monma M. Kosugiyama (1995) ArticleTitleMolecular phylogeny based on the k-casein and cytochrome b sequences in the mammalian suborder Ruminantia J. Mol. Evol. 41 859–866 Occurrence Handle8587130 Occurrence Handle1:CAS:528:DyaK28XivFOisA%3D%3D Occurrence Handle10.1007/BF00173165

    Article  PubMed  CAS  Google Scholar 

  • M.A. Cronin R. Stuart B.J. Pierson J.C. Patton (1996) ArticleTitlek-casein gene phylogeny of higher ruminants (Pecora, Artiodactyla) Mol. Phylogenet. Evol. 6 295–311 Occurrence Handle8899730 Occurrence Handle1:CAS:528:DyaK28XmvFOjtbo%3D Occurrence Handle10.1006/mpev.1996.0078

    Article  PubMed  CAS  Google Scholar 

  • E. Douzery E. Randi (1997) ArticleTitleThe mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content Mol. Biol. Evol. 14 1154–1166 Occurrence Handle9364773 Occurrence Handle1:CAS:528:DyaK2sXnt1aks7o%3D

    PubMed  CAS  Google Scholar 

  • J.F. Eisenberg (1981) The Mammalian Radiations. An Analysis of Trends in Evolution, Adaptation and Behavior The University of Chicago Press Chicago and London

    Google Scholar 

  • F. Fontana M. Rubini (1990) ArticleTitleChromosomal evolution in Cervidae Biosystem 24 157–174 Occurrence Handle1:STN:280:By6D28vktlY%3D Occurrence Handle10.1016/0303-2647(90)90008-O

    Article  CAS  Google Scholar 

  • D.S. Gallagher SuffixJr. J.E. Womack (1992) ArticleTitleChromosome conservation in the Bovidae J. Hered. 83 287–298 Occurrence Handle1401875

    PubMed  Google Scholar 

  • D.S. Gallagher SuffixJr. J.N. Derr J.E. Womack (1994) ArticleTitleChromosome conservation among the advanced pecorans and determination of the primitive bovid karyotype J. Hered. 85 204–210 Occurrence Handle8014460

    PubMed  Google Scholar 

  • A. Graphodatsky A. Sharshov V. Shutov (1990) ArticleTitleKaryotypic relationships between Cervidae Zool. Zh. 69 101–114

    Google Scholar 

  • C.P. Groves P. Grubb (1987) Relationships of living deer C.M. Wemmer (Eds) Biology and Management of the Cervidae Smithsonian Institution Washington, D.C 21–59

    Google Scholar 

  • A. Hassanin E.J.P. Douzery (2003) ArticleTitleMolecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae Syst. Biol. 52 IssueID2 206–228 Occurrence Handle12746147

    PubMed  Google Scholar 

  • S. Herzog (1987) ArticleTitleMechanisms of karyotype evolution in Cervus nippon Temminck Caryologia 40 347–353

    Google Scholar 

  • T.C. Hsu S. Pathak T.R. Chen (1975) ArticleTitleThe possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations Cytogenet. Cell Genet. 15 41–49 Occurrence Handle1102265 Occurrence Handle1:STN:280:CSmD2czgvFw%3D

    PubMed  CAS  Google Scholar 

  • Huang, L., W. Nie, J. Wang, W. Su & F. Yang. Phylogenomic study on subfamily Caprinae by comparative chromosome painting with chinese muntjac paints. Chromosome Res. 13: 389–399.

  • D.M. Irwin T.D. Kocher A.C. Wilson (1991) ArticleTitleEvolution of the cytochrome b gene of mammals J. Mol. Evol. 32 128–144 Occurrence Handle1901092 Occurrence Handle1:CAS:528:DyaK3MXksVejtLk%3D

    PubMed  CAS  Google Scholar 

  • ISCNDB 2000, 2001. International System for Chromosome Nomenclature of Domestic Bovids, Di Berardino, D., G.P. Di Meo, D.S. Gallagher, H. Hayes, L. Lannuzzi, (corrdinator) (eds): Cytogenet. Cell Genet. 92: 283–299

  • C.M. Janis K.M. Scott (1987) ArticleTitleThe interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea Am. Mus. Novit. 2893 1–85

    Google Scholar 

  • F. Kraus M.M. Miyamoto (1991) ArticleTitleRapid cladogenesis among the pecoran ruminants – evidence from mitochondrial-DNA sequences Syst. Zool. 40 117–130 Occurrence Handle10.2307/2992252

    Article  Google Scholar 

  • C. Lee R. Sasi C.C. Lin (1993) ArticleTitleInterstitial location of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs Cytogenet. Cell Genet. 63 156–159 Occurrence Handle8485991 Occurrence Handle1:CAS:528:DyaK3sXms1ektbg%3D

    PubMed  CAS  Google Scholar 

  • K. Ma L. Shi X. Yu E. Wang B. Sun (1988) ArticleTitleAnalysis of the synaptonemal complex of the F1 hybrid of Cervus elaphus xanthopygus and Cervus nippon hortulorum Acta Genet. Sinica 15 197–200 Occurrence Handle1:STN:280:By%2BB3svlt1E%3D

    CAS  Google Scholar 

  • C.A. Matthee J.D. Burzlaff J.F. Taylor S.K. Davis (2001) ArticleTitleMining the mammalian genome for Artiodactyl systematics Syst. Biol. 50 IssueID3 367–390 Occurrence Handle12116581 Occurrence Handle1:STN:280:DC%2BD38zntVOnsA%3D%3D Occurrence Handle10.1080/106351501300317987

    Article  PubMed  CAS  Google Scholar 

  • M.M. Miyamoto F. Kraus O.A. Ryder (1990) ArticleTitlePhylogeny and evolution of antlered deer determined from mitochondrial DNA sequences Proc. Natl. Acad. Sci. USA 87 6127–6131 Occurrence Handle2385588 Occurrence Handle1:CAS:528:DyaK3cXlsVKmsLs%3D Occurrence Handle10.1073/pnas.87.16.6127

    Article  PubMed  CAS  Google Scholar 

  • H. Neitzel (1987) Chromosome evolution of Cervidae: karyotypic and molecular aspects G. Obe A. Basler (Eds) Cytogenetics-Basic and Applied Aspects Springer-Verlag Berlin 90–112

    Google Scholar 

  • R.M. Nowak (1999) Walker’s Mammals of the World EditionNumber6 NumberInSeriesVol. II Johns Hopkins University Press Baltimore and London 1051–1135

    Google Scholar 

  • C. Pitra J. Fickel E. Meijaard P.C. Groves (2004) ArticleTitleEvolution and phylogeny of old world deer Mol. Phylogenet. Evol. 33 880–895 Occurrence Handle15522810 Occurrence Handle1:CAS:528:DC%2BD2cXpt1Wjtrs%3D Occurrence Handle10.1016/j.ympev.2004.07.013

    Article  PubMed  CAS  Google Scholar 

  • E. Randi N. Mucci M. Pierpaoli E. Douzery (1998) ArticleTitleNew phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene Proc. Roy. Soc. Lond. 265 793–801 Occurrence Handle1:STN:280:DyaK1c3ptFGjtQ%3D%3D Occurrence Handle10.1098/rspb.1998.0362

    Article  CAS  Google Scholar 

  • E. Randi N. Mucci C.H. Francoise B. Amélie E.J.P. Douzery (2001) ArticleTitleA mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation Anim. Conserv. 4 1–11 Occurrence Handle10.1017/S1367943001001019

    Article  Google Scholar 

  • H.L. Sheng H.J. Lu (1982) ArticleTitleDistribution, habits and resource status of the tufted deer (Elaphodus cephalophus) Acta Zool. Sinica 28 307–311

    Google Scholar 

  • L. Shi Y.Y. Ye X.S. Duan (1980) ArticleTitleComparative cytogenetic studies on the red muntjac, Chinese muntjac, and their F1 hybrids Cytogenet. Cell Genet. 26 22–27

    Google Scholar 

  • L. Shi F. Yang A. Kumamoto (1991) ArticleTitleThe chromosomes of tufted deer. (Elaphodus cephalophus) Cytogenet Cell Genet. 56 189–192 Occurrence Handle2055116 Occurrence Handle1:STN:280:By6B2srmtVc%3D Occurrence Handle10.1016/0165-4608(91)90170-Y

    Article  PubMed  CAS  Google Scholar 

  • J. Slate T.C. Stijn ParticleVan R.M. Anderson et al. (2002) ArticleTitleA deer (subfamily Cervidae) genetic linkage map and the evolution of Ruminant genomes Genetics 160 1587–1597 Occurrence Handle11973312 Occurrence Handle1:CAS:528:DC%2BD38XktFahsbc%3D

    PubMed  CAS  Google Scholar 

  • W. Wang H. Lan (2000) ArticleTitleRapid and parallel chromosoal number reductions in Muntjac deer inferred from mitochondrial DNA phylogeny Mol. Biol. Evol. 17 IssueID9 1326–1333 Occurrence Handle10958849 Occurrence Handle1:CAS:528:DC%2BD3cXmtFyrtrs%3D

    PubMed  CAS  Google Scholar 

  • Z. Wang R. Du (1988) The Karyotype and Chromosome Evolution of Deer Science Publish House China

    Google Scholar 

  • D.H. Wurster K. Benirschke (1967a) ArticleTitleThe chromosomes of twenty three species of the Cervoidea and Bovoidea Mamm. Chromosome Newslett. 8 226–229

    Google Scholar 

  • D.H. Wurster K. Benirschke (1967b) ArticleTitleChromosome studies in some deer, the springbok, and the pronghorn, with notes on the placentation in deer Cytologia 32 273–285 Occurrence Handle1:STN:280:CCeA2MfpvVM%3D

    CAS  Google Scholar 

  • D.H. Wurster K. Benirschke (1970) ArticleTitleIndian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number Science 168 1364–1366 Occurrence Handle5444269 Occurrence Handle1:STN:280:CS%2BC1cznslI%3D

    PubMed  CAS  Google Scholar 

  • F. Yang N.P. Carter L. Shi M.A. Ferguson-smith (1995) ArticleTitleA comparative study of karyotypes of muntjacs by chromosome painting Chromosoma 103 642–652 Occurrence Handle7587587 Occurrence Handle1:STN:280:BymD1cfjslw%3D

    PubMed  CAS  Google Scholar 

  • F. Yang P.C.M. O’Brien J. Wienberg H. Neitzel C.C. Lin M.A. Ferguson-smith (1997a) ArticleTitleChromosome evolution of the Chinese muntjac (Muntiacus reevesi) Chromosoma 106 37–43 Occurrence Handle1:CAS:528:DyaK2sXlt1Gjs7w%3D Occurrence Handle10.1007/s004120050222

    Article  CAS  Google Scholar 

  • F. Yang P.C.M. O’Brien J. Wienberg M.A. Ferguson-smith (1997b) ArticleTitleA reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting Chromosome Res. 5 IssueID2 109–117 Occurrence Handle1:CAS:528:DyaK2sXjtlSrs7s%3D Occurrence Handle10.1023/A:1018466107822

    Article  CAS  Google Scholar 

  • F. Yang P.C.M. O’Brien J. Wienberg M.A. Ferguson-smith (1997c) ArticleTitleEvolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting Cytogenet. Cell Genet. 76 159–163 Occurrence Handle1:STN:280:ByiA3s%2FgsFU%3D Occurrence Handle10.1159/000134535

    Article  CAS  Google Scholar 

  • Yang, F., 1998. Chromosome evolution of the muntjacs: inferences from molecular cytogenetics. Dissertation for the degree of Doctor of Philosophy, Department of Pathology, Trinity College, University of Cambridge

  • F. Yang A.S. Graphodatsky P.C.M. O’Brien A. Colabella N. Solanky M. Squire D.R. Sargan M.A. Ferguson-smith (2000) ArticleTitleReciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human Chromosome Res. 8 393–404 Occurrence Handle10997780 Occurrence Handle1:CAS:528:DC%2BD3cXmsFGrsL8%3D Occurrence Handle10.1023/A:1009210803123

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengtang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Chi, J., Nie, W. et al. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica 127, 25–33 (2006). https://doi.org/10.1007/s10709-005-2449-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-005-2449-5

Keywords

Navigation