Skip to main content
Log in

Characterization of an EcoRI family of satellite DNA from two species

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We have cloned and sequenced a 321bp band of repetitive DNA from Eptesicus fuscus and E. serotinus observed after gel electrophoresis of EcoRI digested genomic DNA in both species. Southern blot analysis of genomic DNA (from both species) digested with the same enzyme showed the existence of a ladder pattern indicating that the repetitive DNA is arrayed in tandem. The repetitive sequences have a monomer unit of 321bp which is composed of two subunits of 160bp, suggested by the existence of a 160bp band in the ladder of E. fuscus and by the presence of some direct repeats found in the analysis of the consensus sequence. Analysis of the methylation status demonstrated that cytosines in CCGG sequences in this satellite DNA are methylated in E. fuscus but not in the E. serotinus. Alignment of the sequenced clones showed that several nucleotide positions are diagnostic species-specific and consequently the phylogenetic analysis grouped the monomer units from both species in two clearly separated groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    PubMed  Google Scholar 

  • Baker, R. J., J. L. Longmire, M. Maltbie, M. J. Hamilton & R. A. Van Den Bussche, 1997. DNA synapomorphies for a variety of taxonomic levels from a cosmid library from the New World bat Macrotus waterhousii. Syst. Biol. 46: 579–589.

    PubMed  Google Scholar 

  • Barragán, M. J. L., S. Martínez, J. A. Marchal, M. Bullejos, R. Díaz de la Guardia & A. Sánchez, 2002a. Highly repeated DNA sequences in three species of the genus Pteropus (Megachiroptera, Mammalia). Heredity 88: 366–370.

    PubMed  Google Scholar 

  • Barragán, M. J. L., S. Martínez, J. A. Marchal, M. Bullejos, R. Díaz de la Guardia & A. Sánchez, 2002b. Highly repeated DNA sequences in Miniopterus schreibersi (Vespertilioni-dae;Chiroptera). Hereditas 137: 65–71.

    PubMed  Google Scholar 

  • Barragán, M. J. L., S. Martínez, J. A. Marchal, M. R. Fernández, M. Bullejos, R. Díaz de la Guardia & A. Sánchez, 2003. Pericentric satellite DNA sequences in Pipistrellus pipistrel-lus (Vespertilionidae;Chiroptera;Mammalia). Heredity 91: 232–238.

    PubMed  Google Scholar 

  • Borodulina, O. R. & D. A. Kramerov, 1999. Wide distribution of short interspersed elements among eukaryotic genomes. FEBS 457: 409–413.

    Google Scholar 

  • Burton, D. W., J. W. Bickhan & H. H. Genoways, 1989. Flow-cytometric analysis of nuclear DNA content in four families of Neotropical bats. Evolution 34: 756–765.

    Google Scholar 

  • Capanna, E. & M. G. Manfredi Romanini, 1971. Nuclear DNA content and morphology of the karyotype in certain palearctic Microchiroptera. Caryologia 24: 471–482.

    Google Scholar 

  • Capanna, E. & M. G. Manfredi Romanini, 1973. Contenu en ADN des noyaux postkinétiques et évolution du caryotype chez les chiroptères. Periodicum Biologorum 75: 55–60.

    Google Scholar 

  • Gregory, T. R., 2001. Animal Genome Size Database. http:// www. genomesize. com.

  • Kimura, M., 1980. A simple method for estimating evo-lutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    PubMed  Google Scholar 

  • Kumar, S., K. Tamura & M. Nei, 1993. MEGA: Mole-cular Evolutionary Genetics Analysis, Version 1.01. The Pennsylvania State University, University Park, PA 16802.

    Google Scholar 

  • Lee, C. & C. C. Lin, 1996. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species. Chromosome Res. 4: 427–435.

    PubMed  Google Scholar 

  • Lorite, P., M. F. García & T. Palomeque, 1999. Satellite DNA in the ant Messor structor. Genome 42: 881–886.

    PubMed  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Pettigrew, J. D.& J. A. Kirsch, 1995. Flying primates revisited: DNA hybridization with fractionated, GC-enriched DNA. S. Afr. J. Sci. 91: 477–482.

    Google Scholar 

  • Rojas-Rousse, D., Y. Bigot & G. Periquet, 1993. DNA insertions as a component of the evolution of unique satellite DNA families in two genera of parasitoid wasps: Diadromus and Eupelmus (Hymenoptera). Mol. Biol. Evol. 10: 383–396.

    PubMed  Google Scholar 

  • Romanini, M. G., C. Pellicciari, F. Bolchi & E. Capanna, 1975. New data on the DNA content of postkinetic nuclei of the bats. Mammalia 39: 675–683.

    PubMed  Google Scholar 

  • Rozas, J. & R. Rozas, 1999. DnaSP version 3: and inte-grated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174–175.

    PubMed  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning. A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sonoda, S., T. Yamada, T. Naito & F. Nakasuji, 1995. Repetitive DNA sequences families in Hemitaxonus minom-ensis and H. athyrii (Hymenoptera;Tenthredinidae). Jpn. J. Genet. 70: 7–16.

    PubMed  Google Scholar 

  • Tarès, S., J. Cornuet & P. Abad, 1993. Characterization of an unusually conserved Alu I highly reiterated DNA sequence family from the Honeybee, Apis mellifera. Genetics 134: 1195–1204.

    PubMed  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUS-TAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-speci c gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    PubMed  Google Scholar 

  • Van Den Bussche, R. A., J. L. Longmire & R. J. Baker, 1995. How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mammal Genome 6: 521–525.

    Google Scholar 

  • Zhang, X. Y. & W. Horz, 1984. Nucleosomes are positioned on mouse satellite DNA in multiple highly speci c frames that are correlated with a diverged subrepeat of nine base-pairs. J. Mol. Biol. 176: 105–129.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchal, J., Martínez, S., Acosta, M. et al. Characterization of an EcoRI family of satellite DNA from two species. Genetica 122, 303–310 (2004). https://doi.org/10.1007/s10709-004-2220-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-004-2220-3

Navigation