Skip to main content
Log in

Landscape shape adjusted compactness index for urban areas

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Scattered urban development leads to non-compact urban form. In this paper, I demonstrate that Index of Moment of Inertia is a useful metric to measure compactness. However, elongated political boundaries and natural restrictions severely distort the metric, rendering it less useful for monitoring urban development. I propose a landscape shape adjustment of this metric that retains some of the useful properties of the Index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Angel, S., Parent, J., & Civco, D. L. (2010). Ten compactness properties of circles: measuring shape in geography. The Canadian Geographer / Le Géographe canadien, 54(4), 441–461.

    Article  Google Scholar 

  • Batty, M. (2001). Polynucleated urban landscapes. Urban Studies, 38(4), 635–655.

    Article  Google Scholar 

  • Boyce, R. R., & Clark, W. A. V. (1964). The concept of shape in geography. Geographical Review, 54(4), 561–572.

    Article  Google Scholar 

  • Bucarey, Victor., Ordó nez, Fernando., Bassaletti, Enrique. (2015). Shape and Balance in Police Districting. In Applications of Location Analysis, ed. H. A. Eiselt and Vladimir Marianov. International Series in Operations Research & Management Science Cham: Springer International Publishing pp. 329–347.

  • Carruthers, J. I., & Ulfarsson, G. F. (2003). Urban sprawl and the cost of public services. Environment and Planning B: Planning and Design, 30(4), 503–522.

    Article  Google Scholar 

  • Fan, C., Li, W., Wolf, L. J., & Myint, S. W. (2015). A spatiotemporal compactness pattern analysis of congressional districts to assess partisan gerrymandering: a case study with California and north Carolina. Annals of the Association of American Geographers, 105(4), 736–753.

    Article  Google Scholar 

  • Fan, Y., & Song, Y. (2009). Is sprawl associated with a widening urban-suburban mortality gap? Journal of Urban Health, 86(5), 708–728.

    Article  Google Scholar 

  • Frenkel, A., & Ashkenazi, M. (2008). Measuring urban sprawl: how can we deal with it? Environment and Planning B: Planning and Design, 35(1), 56–79.

    Article  Google Scholar 

  • Frumkin, H. (2002). Urban sprawl and public health. Public health reports, 117(3), 201–217.

    Article  Google Scholar 

  • Galster, G., Hanson, R., Ratcliffe, M. R., Wolman, H., Coleman, S., & Freihage, J. (2001). Wrestling sprawl to the ground: defining and measuring an elusive concept. Housing policy debate, 12(4), 681–717.

    Article  Google Scholar 

  • Gustafson, E. J. (1998). Minireview: quantifying landscape spatial pattern: what is the state of the art? Ecosystems, 1(2), 143–156.

    Article  Google Scholar 

  • Huang, J., Lu, X. X., & Sellers, J. M. (2007). A global comparative analysis of urban form: applying spatial metrics and remote sensing. Landscape and Urban Planning, 82(4), 184–197.

    Article  Google Scholar 

  • Ingram, D. D., & Franco, S. J. (2012). NCHS urban-rural classification scheme for counties. Vital and Health Sstatistics. Series 2, Data Evaluation and Methods Research 154:1–65. http://europepmc.org/abstract/med/22783637

  • Jaeger, J. A. G., & Schwick, C. (2014). Improving the measurement of urban sprawl: weighted urban proliferation (WUP) and its application to Switzerland. Ecological Indicators, 38, 294–308.

    Article  Google Scholar 

  • Jones, C., & Kammen, D. M. (2014). Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environmental Science & Technology, 48(2), 895–902.

    Article  Google Scholar 

  • Kaza, N. (2020). Urban form and transportation energy consumption. Energy Policy, 136, 111049.

    Article  Google Scholar 

  • Li, W., Goodchild, M. F., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science, 27(6), 1227–1250.

    Article  Google Scholar 

  • Maceachren, A. M. (1985). Compactness of geographic shape: comparison and evaluation of measures. Geografiska Annaler: Series B, Human Geography, 67(1), 53–67.

    Article  Google Scholar 

  • McCarty, J., & Kaza, N. (2015). Urban form and air quality in the United States. Landscape and Urban Planning, 139, 168–179.

    Article  Google Scholar 

  • Miller, V. C. (1953). A Quantitative geomorphic study of drainage basin characteristics in the clinch mountain area Virginia and Tennessee. Technical Report CU-TR-3 Columbia University New York: . https://apps.dtic.mil/docs/citations/AD0057755

  • Polsby, D., Popper, R. (1991). The third criterion: Compactness as a procedural safeguard against partisan gerrymandering. Yale Law & Policy Review 9(2):301–353. https://digitalcommons.law.yale.edu/ylpr/vol9/iss2/6

  • Reock, E. C. (1961). A note: Measuring compactness as a requirement of legislative apportionment. Midwest Journal of Political Science, 5(1), 70–74.

    Article  Google Scholar 

  • Ross, N. (2018). Fasterize: Fast polygon to raster conversion. Technical report. https://CRAN.R-project.org/package=fasterize

  • Schneider, A., & Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive? a comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Studies, 45(3), 659–692.

    Article  Google Scholar 

  • Schwartzberg, J. E. (1966). Reapportionment, gerrymanders, and the notion of compactness. Minnesota Law Review, 50, 443–452.

    Google Scholar 

  • Schwarz, N. (2010). Urban form revisited—selecting indicators for characterising European cities. Landscape and Urban Planning, 96(1), 29–47.

    Article  Google Scholar 

  • Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PLOS ONE, 6(8), e23777.

    Article  Google Scholar 

  • Song, Y., & Knaap, G.-J. (2004). Measuring urban form: Is portland winning the war on sprawl? Journal of the American Planning Association, 70(2), 210–225.

    Article  Google Scholar 

  • Stone, B., Mednick, A. C., Holloway, T., & Spak, S. N. (2007). Is compact growth good for air quality? Journal of the American Planning Association, 73(4), 404–418.

    Article  Google Scholar 

  • Sugarbaker, L. J., Eldridge, D. F., Jason, A. L., Lukas, V., Saghy, D. L., Stoker, J. M., & Thunen, D. R. (2017). Status of the 3D elevation program, 2015. USGS numbered series 2016-1196 U.S. Geological Survey Reston VA. http://pubs.er.usgs.gov/publication/ofr20161196

  • United States Geological Survey. (2014). NLCD 2011 Land Cover (2011 Edition, Amended 2014) - National Geospatial Data Asset (NGDA) Land Use Land Cover - ScienceBase-Catalog.”. https://www.sciencebase.gov/catalog/item/581d050ce4b08da350d52363

  • Taubenböck, H., Wurm, M., Geiß, C., Dech, S., & Siedentop, S. (2019). Urbanization between compactness and dispersion: Designing a spatial model for measuring 2D binary settlement landscape configurations. International Journal of Digital Earth, 12(6), 679–698.

    Article  Google Scholar 

  • Tsai, Y.-H. (2005). Quantifying urban form: compactness versus ’Sprawl’. Urban Studies .

  • Walker, K. (2019). Tigris: Load Census TIGER/Line Shapefiles. https://CRAN.R-project.org/package=tigris

  • Zhao, Z., & Stough, R. R. (2005). Measuring similarity among various shapes based on geometric matching. Geographical Analysis, 37(4), 410–422.

    Article  Google Scholar 

  • Zhou, J., Xiao, N., Liu, L., & Li, Q. (2016). A weighted aggregation and closeness approach to measuring the compactness of landscape with multiple parts. Ecological Indicators, 64, 158–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Kaza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaza, N. Landscape shape adjusted compactness index for urban areas. GeoJournal 87, 1399–1409 (2022). https://doi.org/10.1007/s10708-020-10262-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-020-10262-9

Keywords

Navigation