Skip to main content
Log in

Assessing the Effectiveness of TRIGRS for Predicting Unstable Areas in a Tropical Mountain Basin (Colombian Andes)

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Some physically based landslide models analyse pore water pressure changes due to rainfall infiltration and its effects on slope stability. The physically-based model TRIGRS has been successfully used in rainfall-induced shallow landslide assessments in different studies around the world; nevertheless, evaluating its performance in tropical mountain terrains, such as the Colombian Andes, is necessary. In this study, the TRIGRS model was applied to the La Arenosa basin (San Carlos, Colombia) and ROC (receiver operating characteristic) analysis was used to assess its effectiveness (performance) at predicting areas susceptible to shallow landslides in this tropical mountainous area. The results were compared with those obtained using the SHIA_Landslide (Simulación Hidrológica Abierta, or SHIA, in Spanish) and SHALSTAB models in the same case study. The three models performed well, especially TRIGRS and SHIA_Landslide. The predictive results using TRIGRS were thoroughly analysed, describing the effect of the slope angle and its relationship with the estimated soil depth on the variation of the pressure head and the factor of safety (FS) during the simulated rainfall event. The high dependence of FS on soil thickness demonstrated that defining this variable must be carefully accomplished. The results suggest that TRIGRS can be a valuable tool in tropical mountain terrains, such as the Colombian Andes basins, and it can be useful despite the lack of data and the high parameter uncertainty that is common in many study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Fawcett 2006)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Google Scholar 

  • Alvioli M, Baum RL (2016) Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ Model Softw 81:122–135

    Google Scholar 

  • An H, Tran TV, Lee GH, Kim Y, Kim M, Noh S, Noh J (2016) Development of time-variant landslide-prediction software considering three-dimensional subsurface unsaturated flow. Environ Model Softw 85:172–183

    Google Scholar 

  • Aristizábal E (2014) SHIA_Landslide: developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments. Dissertation, Universidad Nacional de Colombia

  • Aristizábal E, García E, Martínez C (2015) Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains. Nat Hazards 78:621–634

    Google Scholar 

  • Aristizábal E, Martínez-Carvajal H, García-Aristizábal E (2017) Modelling shallow landslides triggered by rainfall in tropical and mountainous basins. Workshop on World Landslide Forum. Springer, Newyork, pp 207–212

    Google Scholar 

  • Aristizábal E, Vélez JI, Martínez HE, Jaboyedoff M (2016) SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides 13:497–517

    Google Scholar 

  • Aristizábal E, Sánchez O (2020) Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters 44(3):596–618

    Google Scholar 

  • Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7:259–272

    Google Scholar 

  • Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J. Geophys. Res, Earth Surf, p 115

    Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS- A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2. 0. U.S. Geological Survey Open-File Report.

  • Baum RL, Savage WZ, Godt JW (2002). TRIGRS–a Fortran program for transient rainfall infiltration and grid–based regional slope–stability analysis. USGS Open File Report 02–0424. US Geol. Surv. Reston, VA

  • Bishop AW (1954) The use of pore-pressure coefficients in practice. Geotechnique 4:148–152

    Google Scholar 

  • Bogaard TA, Greco R (2018) Hydrological perspectives on precipitation intensity-duration thresholds for a landslide initiation: proposing hydro-meteorological thresholds. Nat Hazards Earth Syst Sci 18:31–39

    Google Scholar 

  • Bueechi E, Klimeš J, Frey H, Huggel C, Strozzi T, Cochachin A (2019) Regional-scale landslide susceptibility modelling in the cordillera blanca, peru—a comparison of different approaches. Landslides 16:395–407

    Google Scholar 

  • Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press, Cambridge

    Google Scholar 

  • Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf. Process Landforms J Br Geomorphol Res Gr 28:925–950

    Google Scholar 

  • Catani F, Segoni S, Falorni G (2010) An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour Res. https://doi.org/10.1029/2008WR007450

    Article  Google Scholar 

  • Cepeda J, Höeg K, Nadim F (2010) Landslide-triggering rainfall thresholds: a conceptual framework. Q J Eng Geol Hydrogeol 43:69–84

    Google Scholar 

  • Chatra AS, Dodagoudar GR, Maji VB (2019) Numerical modelling of rainfall effects on the stability of soil slopes. Int J Geotech Eng 13:425–437

    Google Scholar 

  • Chatterjee D, Krishna AM (2019) Effect of slope angle on the stability of a slope under rainfall infiltration. Indian Geotechnical J 49:708–717

    Google Scholar 

  • Chen XL, Liu CG, Chang ZF, Zhou Q (2016) The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology 253:547–550

    Google Scholar 

  • Ciurleo M, Mandaglio MC, Moraci N (2019) Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area. Landslides 16:175–188

    Google Scholar 

  • Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced landslides. J Geotech geoenviron Eng 130:362–372

    Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Pitilakis K (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73(2):209–263

    Google Scholar 

  • Crosta GB, Frattini P (2008) Rainfall-induced landslides and debris flows. Hydrol Process An Int J 22:473–477

    Google Scholar 

  • Crozier MJ (1986) Landslides: causes, consequences & environment. Croom Helm, London

    Google Scholar 

  • Dikshit A, Satyam N, Pradhan B (2019) Estimation of rainfall-induced landslides using the TRIGRS model. Earth Syst Environ 3:575–584

    Google Scholar 

  • Duncan JM, Wright SG (2005) Soil strength and slope stability. Wiley, Hoboken, New Jersey

    Google Scholar 

  • Fan L, Lehmann P, Or D (2016) Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall-induced landslides. Water Resour Res 52:1781–1799

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide ocurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181

    Google Scholar 

  • Fustos I, Abarca-del-Río R, Mardones M, González L, Araya LR (2020) Rainfall-induced landslide identification using numerical modelling: A southern Chile case. J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2020

    Article  Google Scholar 

  • García-Aristizábal EF, Aristizábal E, Marín RJ, Guzmán JC (2019) Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia. TecnoLógicas 22:111–129

    Google Scholar 

  • Gardner WR (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232

    Google Scholar 

  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102:214–226. https://doi.org/10.1016/j.enggeo.2008.03.019

    Article  Google Scholar 

  • Gomes GJ, Vrugt JA, Vargas EA Jr, Camargo JT, Velloso RQ, van Genuchten MT (2017) The role of uncertainty in bedrock depth and hydraulic properties on the stability of a variably-saturated slope. Comput Geotech 88:222–241

    Google Scholar 

  • Gómez J, Nivia Á, Montes NE, Almanza MF, Alcárcel FA, Madrid CA (2015) Notas explicativas: mapa Geológico de Colombia. Publicaciones geológicas especiales 33:9–33

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Hammond C, Hall D, Miller S, Swetic P (1992) Level I Stability Analysis (LISA) documentation for version 2.0. USDA Forest Service Intermountain Research Station, Ogden, UT, General Technical Report INT-285. US Department of Agriculture, Forest Service, Intermountain Research Station

  • Han X, Liu J, Mitra S, Li X, Srivastava P, Guzman SM, Chen X (2018) Selection of optimal scales for soil depth prediction on headwater hillslopes: a modeling approach. CATENA 163:257–275

    Google Scholar 

  • Huat BBK, Ali FHJ, Low TH (2006) Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotech Geol Eng 24:1293–1306

    Google Scholar 

  • IGAC (2007) Estudio general de suelos y zonificación de tierras: departamento de Antioquia 2007. Instituto Geográfico Agustín Codazzi, Bogotá

    Google Scholar 

  • Iiritano G, Versace P, Sirangelo B (1998) Real-time estimation of hazard for landslides triggered by rainfall. Environ Geol 35:175–183

    Google Scholar 

  • INTEGRAL SA (1990) Informe sobre daños en la central de calderas por la avalancha ocurrida en la quebrada La Arenosa el 21 de septiembre de 1990 y su reparación. Rep, Interconexión Eléctrica SA ISA, p 45

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897. https://doi.org/10.1029/2000WR900090

    Article  Google Scholar 

  • Katz O, Morgan JK, Aharonov E, Dugan B (2014) Controls on the size and geometry of landslides: insights from discrete element numerical simulations. Geomorphology 220:104–113

    Google Scholar 

  • Kim D, Im S, Lee SH, Hong Y, Cha K-S (2010) Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. J Mt Sci 7:83–91

    Google Scholar 

  • Kirschbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam A (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575

    Google Scholar 

  • Li AG, Yue ZQ, Tham LG, Lee CF, Law KT (2005) Field-monitored variations of soil moisture and matric suction in a saprolite slope. Can Geotech J 42:13–26

    Google Scholar 

  • Liu J, Han X, Chen X, He R, Wu P (2019) Prediction of soil thicknesses in a headwater hillslope with constrained sampling data. CATENA 177:101–113

    Google Scholar 

  • Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley, NewJersey

    Google Scholar 

  • Malone B, Searle R (2020) Improvements to the Australian national soil thickness map using an integrated data mining approach. Geoderma 377:114579

    Google Scholar 

  • Marin RJ (2020) Physically based and distributed rainfall intensity and duration thresholds for shallow landslides. Landslides. https://doi.org/10.1007/s10346-020-01481-9

    Article  Google Scholar 

  • Marín RJ, Guzmán-Martínez JC, Martínez HE, García-Aristizábal EF, Cadavid-Arango JD, Agudelo-Vallejo P (2018) Evaluación del riesgo de deslizamientos superficiales para proyectos de infraestructura: caso de análisis en vereda El Cabuyal. Ingeniería y Ciencia 14:153–177

    Google Scholar 

  • Marín RJ, Osorio JP (2017) Modelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficiales. Revista EIA 14:13–28

    Google Scholar 

  • Marin RJ, Mattos AJ (2020) Physically-based landslide susceptibility analysis using Monte Carlo simulation in a tropical mountain basin. Georisk 14:192–205. https://doi.org/10.1080/17499518.2019.1633582

    Article  Google Scholar 

  • Marin RJ, Velásquez MF (2020) Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides. Geomorphology 351:106976

    Google Scholar 

  • Marín RJ, García-Aristizábal E, Aristizábal E (2019) Umbrales de lluvia para deslizamientos superficiales basados en modelos físicos: aplicación en una subcuenca del Valle de Aburrá (Colombia). Dyna 86:312–322

    Google Scholar 

  • Mathew J, Kundu S, Kumar KV, Pant CC (2016) Hydrologically complemented deterministic slope stability analysis in part of Indian Lesser Himalaya. Geomat, Nat Hazards Risk 7:1557–1576

    Google Scholar 

  • Mejía R, Velásquez ME (1991) Procesos y depósitos asociados al aguacero de septiembre 21 de 1990 en el Área de San Carlos (Antioquia). Dissertation, Universidad Nacional de Colombia. Medellín.

  • Mesa MI, Lalinde CP (2001) Actividad de la falla Espíritu Santo. Revista Horizontes Naturales 4:31–39

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Google Scholar 

  • Noriega-Londoño S, Restrepo-Moreno SA, Vinasco C, Bermúdez MA, Min K (2020) Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: northwestern Central Cordillera. Colombia Geomorphology 351:106890

    Google Scholar 

  • O’loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology. Vancouver, British Columbia, Canada, pp 21–25

    Google Scholar 

  • Polemio M, Petrucci O (2000) Rainfall as a landslide triggering factor an overview of recent international research. Landslides in research, theory and practice. Thomas Telford, Cardiff, pp 1219–1226

    Google Scholar 

  • Piciullo L, Calvello M, Cepeda J (2018) Territorial early warning systems for rainfall-induced landslides. Earth-Sci Rev 179:228–247

    Google Scholar 

  • Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng 133:1532–1543

    Google Scholar 

  • Rahimi A, Rahardjo H, Leong E-C (2010) Effect of antecedent rainfall patterns on rainfall-induced slope failure. J Geotech Geoenviron Eng 137:483–491

    Google Scholar 

  • Restrepo-Moreno SA, Foster DA, Bernet M, Min K, Noriega S (2019) Morphotectonic and orogenic development of the Northern Andes of Colombia: a low-temperature thermochronology perspective. Geology and Tectonics of Northwestern South America. Springer, Cham, pp 749–832

    Google Scholar 

  • Restrepo-Moreno S, Foster D, Stockli D, Parra N (2009) Long-term erosion andexhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) fromapatite (U–Th)/He thermochronology. Earth Planet Sci Lett 278(1–2):1–12

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Baum RL, Conversini P (2008) Modeling landslide recurrence in Seattle, Washington. USA Eng Geol 102:227–237. https://doi.org/10.1016/j.enggeo.2008.03.013

    Article  Google Scholar 

  • Schilirò L, Montrasio L, Mugnozza GS (2016) Prediction of shallow landslide occurrence: validation of a physically-based approach through a real case study. Sci Total Environ 569:134–144

    Google Scholar 

  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet JP (2018) Optimizing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology 301:10–20

    Google Scholar 

  • Segoni S, Rossi G, Catani F (2012) Improving basin scale shallow landslide modelling using reliable soil thickness maps. Nat Hazards 61:85–101

    Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501. https://doi.org/10.1007/s10346-018-0966-4

    Article  Google Scholar 

  • Sepúlveda SA, Petley DN (2015) Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat Hazards Earth Syst Sci 15:1821–1833

    Google Scholar 

  • Sharma RH, Nakagawa H (2005) Shallow landslide modeling for heavy rainfall events. Annals of disaster prevention 2005. Kyoto University, Kyoto

    Google Scholar 

  • Sorbino G, Sica C, Cascini L (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53:313–332

    Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics. Soil Sci 66:161

    Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35:124–130

    Google Scholar 

  • Tran T, Lee G, Thu TM, An HU (2016) Effect of digital elevation model resolution on shallow landslide modeling using TRIGRS. Nat Hazards Rev 18:4016011

    Google Scholar 

  • Tran T, Lee G, An H, Kim M (2017) Comparing the performance of TRIGRS and TiVaSS in spatial and temporal prediction of rainfall-induced shallow landslides. Environ Earth Sci 76:315

    Google Scholar 

  • Tran T, Alvioli M, Lee G, An HU (2018) Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: a case study. Landslides 15:1071–1084

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • Vélez JI (2001) Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de crecidas. Dissertation, Universitat Politècnica de València.

  • Vieira BC, Fernandes NF (2010) Shallow landslide prediction in the Serra do Mar, Sao Paulo. Brazil Nat Hazards Earth Syst Sci 10:1829–1837

    Google Scholar 

  • Vieira BC, Fernandes NF, Filho OA, Martins TD, Montgomery DR (2018) Assessing shallow landslide hazards using the TRIGRS and SHALSTAB models, Serra do Mar, Brazil. Environ Earth Sci 77:260

    Google Scholar 

  • Weidner L, Oommen T, Escobar-Wolf R, Sajinkumar KS, Samuel RA (2018) Regional-scale back-analysis using TRIGRS: an approach to advance landslide hazard modeling and prediction in sparse data regions. Landslides 15:2343–2356

    Google Scholar 

  • Yang Z, Cai H, Shao W, Huang D, Uchimura T, Lei X, Tian H, Qiao J (2019) Clarifying the hydrological mechanisms and thresholds for rainfall-induced landslide: in situ monitoring of big data to unsaturated slope stability analysis. Bull Eng Geol Env 78:2139–2150

    Google Scholar 

  • Zhao B, Dai Q, Han D, Dai H, Mao J, Zhuo L (2019) Probabilistic thresholds for landslides warning by integrating soil moisture conditions with rainfall thresholds. J Hydrol 574:276–287

    Google Scholar 

  • Zizioli D, Meisina C, Valentino R, Montrasio L (2013) Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat Hazards Earth Syst Sci 13:559–573

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank to Landslide Scientific Assessment (LandScient), the University of Antioquia and the Infrastructure Investigation Group (GII) for providing support for conducting this research. In memory of Ing. Lucas Velásquez Zapata.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto J. Marin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, R.J., García, E.F. & Aristizábal, E. Assessing the Effectiveness of TRIGRS for Predicting Unstable Areas in a Tropical Mountain Basin (Colombian Andes). Geotech Geol Eng 39, 2329–2346 (2021). https://doi.org/10.1007/s10706-020-01630-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-020-01630-w

Keywords

Navigation