Skip to main content
Log in

Modeling of Stone Column-Supported Embankment Under Axi-Symmetric Condition

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

In the present work, a simplified model has been developed to study the behavior of stone column-supported embankment under axi-symmetric loading condition. The rate of consolidation of stone column-reinforced soft ground under axi-symmetric condition has also been presented in the paper. Mechanical model elements such as Pasternak shear layer, spring–dashpot system are used to model the different components such as granular layer, soft soil, stone columns etc. The governing differential equations are solved by finite difference technique. Parametric study has also been carried out to show the effect of different model variables on the settlement, stress concentration ratio of the foundation system. It is observed that for lower diameter ratio, at a particular time, the degree of consolidation predicted by the present method for axi-symmetric loading condition is almost same or lower than the degree of consolidation obtained by unit cell approach, but as the diameter ratio increases present analysis predicts higher degree of consolidation as compared to the unit cell approach. The maximum settlement decreases as the modular ratio increases and beyond the modular ratio value 30, the reduction rate of settlement decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

a :

Cross-sectional area of flow

A c :

Cross-sectional area of the equivalent stone ring

A s :

Cross-sectional area of the surrounding soil

a s :

Area replacement ratio

c r :

Radial coefficient of consolidation

d :

Thickness or depth of the shear layer

d′:

Rate of change of thickness of the shear layer w. r. t r (i.e. d′ = ∂d/∂r)

D :

Normalized d

E c :

Elastic modulus of the material in stone column

E s :

Elastic modulus of foundation soil

E c /E s :

Modular ratio

G e0 :

Initial shear modulus of embankment soil

\(G_{e0}^{*}\) :

Normalized G e0

G f0 :

Initial shear modulus of the granular fill

\(G_{f0}^{*}\) :

Normalized G f0

H e :

Height of embankment

H f :

Thickness of granular layer

k c0 :

Initial modulus of subgrade reaction of the stone column

k h :

Coefficient of horizontal permeability of soft soil

k s0 :

Initial modulus of subgrade reaction of the soft soil

m vc :

Coefficient of volume compressibility of stone column

m vs :

Coefficient of volume compressibility of soft soil

n :

Slope of the embankment

n s :

Stress concentration ratio

N :

Diameter ratio

N r :

Total shear force per unit surface area of the shear layer

q :

Load on shear layer (including self weight of the embankment and loading due to traffic)

q 0 :

Surcharge applied on the top of the embankment

\(q_{0}^{*}\) :

Normalized q 0

q c :

Vertical stress acting on stone column

q cu :

Ultimate bearing capacity of stone column material

\(q_{cu}^{*}\) :

Normalized q cu

q s :

Vertical stress acting on soft soil

q su :

Ultimate bearing capacity of soft soil

\(q_{su}^{*}\) :

Normalized q su

q t :

Stress acting on the top of the granular layer or sand blanket

r :

Radius of shear layer

R :

Normalized r

R b :

Radius of base of circular pad or embankment

R f :

Radius of granular layer or sand blanket

R t :

Radius of top of circular pad or embankment

S :

Spacing between the stone columns

S e :

Spacing between equivalent stone rings

t :

Time

t c :

Thickness of equivalent stone rings

T r :

Time factor

\(\bar{u}_{axi}\) :

Excess pore water pressure

U axi :

Degree of consolidation under axi-symmetric condition

V :

Volume of the soil

w :

Displacement in vertical direction

W :

Normalized w

α :

Spring constant ratio

ε :

Vertical strain

γ e :

Unit weight of embankment soil

γ w :

Unit weight of water

ν c :

Poisson ratio of the stone column material

ν s :

Poisson ratio of the soft soil

ρ :

Soil arching ratio

τ rz :

Shear stresses in embankment soil

τ eu :

Ultimate shear resistance of the embankment soil

τ f :

Shear stresses in granular layer

τ fu :

Ultimate shear resistance of the granular layer

References

  • Aboshi H, Ichimoto E, Enoki M, Harada K (1979) The compozer—a method to improve characteristics of soft clays by inclusion of large diameter sand columns. In: Proceedings of international conference on soil reinforcement, vol 1. E.N.P.C., Paris, pp 211–216

  • Abusharar SW, Zheng JJ, Chen BG, Yin JH (2009) A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotext Geomembr 27(1):35–52

    Article  Google Scholar 

  • Alamgir M, Miura N, Poorooshasb HB, Madhav MR (1996) Deformation analysis of soft ground reinforced by columnar inclusions. Comput Geotech 18(4):267–290

    Article  Google Scholar 

  • Ambily AP, Gandhi SR (2007) Behavior of stone column based on experimental and FEM analysis. J. Geotech Geoenviron Eng 133(4):405–415

    Article  Google Scholar 

  • Balaam NP, Booker JR (1981) Analysis of rigid rafts supported by granular piles. Int J Numer Anal Methods Geomech 5(4):379–403

    Article  Google Scholar 

  • Barron RA (1947) Consolidation of fine-grained soils by drain wells. Proc ASCE 73(6):811–835

    Google Scholar 

  • Basack S, Indraratna B, Rujikiatkamjorn C (2016) Modelling the performance of stone column reinforced soft ground under static and cyclic loads. J Geotech Geoenviron Eng ASCE 142(2):04015067-1–04015067-15

    Article  Google Scholar 

  • Basu D, Basu P, Prezzi M (2006) Analytical solutions for consolidation aided by vertical drains. Geomech Geoeng Int J 1(1):63–71

    Article  Google Scholar 

  • Borges JL, Domingues TS, Cardoso AS (2009) Embankments on soft soil reinforced with stone columns: numerical analysis and proposal of a new design method. Geotech Geol Eng 27(6):667–679

    Article  Google Scholar 

  • Castro J, Sagaseta C (2009) Consolidation around stone columns. Influence of column deformation. Int J Numer Anal Methods Geomech 33:851–877

    Article  Google Scholar 

  • Chai JC, Miura N (1999) Investigation of factors affecting vertical drain behavior. J Geotech Geoenviron Eng 125(3):216–226

    Article  Google Scholar 

  • Das AK, Deb K (2014) Modeling of uniformly loaded circular raft resting on stone column-improved ground. Soils Found 54(6):1212–1224

    Article  Google Scholar 

  • Das AK, Deb K (2016) Response of cylindrical storage tank foundation resting on tensionless stone column-improved soil. Int J Geomech ASCE. doi:10.1061/(ASCE)GM.1943-5622.0000697

    Google Scholar 

  • Deb K (2008) Modeling of granular bed-stone column-improved soft soil. Int J Numer Anal Methods Geomech 32(10):1267–1288

    Article  Google Scholar 

  • Deb K (2010) A mathematical model to study the soil arching effect in stone column-supported embankment resting on soft soil. Appl Math Model 34(12):3871–3883

    Article  Google Scholar 

  • Deb K, Dhar A (2011) Optimum design of stone column-improved soft soil using multiobjective optimization technique. Comput Geotech 38(1):50–57

    Article  Google Scholar 

  • Deb K, Dhar A (2013) Parameter estimation for a system of beam resting on stone column-reinforced soft soil. Int J Geomech 13(3):222–233

    Article  Google Scholar 

  • Deb K, Mohapatra SR (2013) Analysis of stone column-supported geosynthetic-reionforced embankments. Appl Math Model 37(5):2943–2960

    Article  Google Scholar 

  • Deb K, Behera A (2016) Rate of consolidation of stone column-improved ground considering variable permeability and compressibility in smear zone. Int J Geomech ASCE. doi:10.1061/(ASCE)GM.1943-5622.0000830

    Google Scholar 

  • Deb K, Shiyamalaa S (2016) Effect of clogging on rate of consolidation of stone column-improved ground by considering particle migration. Int J Geomech ASCE. doi: 10.1061/(ASCE)GM.1943-5622.0000492

  • Deb K, Basudhar PK, Chandra S (2007) Generalized model for geosynthetic-reinforced granular fill-soft soil with stone columns. Int J Geomech 7(4):266–276

    Article  Google Scholar 

  • Deb K, Chandra S, Basudhar PK (2008) Response of multi layer geosynthetic-reinforced bed resting on soft soil with stone columns. Comput Geotech 35(3):323–330

    Article  Google Scholar 

  • Deb K, Basudhar PK, Chandra S (2010) Axi-symmetric analysis of geosynthetic-reinforced granular fill-soft soil system with group of stone columns. Geotech Geol Eng 28(2):177–186

    Article  Google Scholar 

  • Deb K, Samadhiya NK, Namdeo JB (2011) Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay. Geotext Geomembr 29:190–196

    Article  Google Scholar 

  • Elshazly HA, Hafez DH, Mossaad ME (2008) Reliabilty of conventional settlement evaluation for circular foundation on stone column. Geotech Geol Eng 26:323–334

    Article  Google Scholar 

  • Ghosh C, Madhav MR (1994) Settlement response of a reinforced shallow earth bed. Geotext Geomembr 13(9):643–656

    Article  Google Scholar 

  • Han J, Ye SL (2001) Simplified method for consolidation rate of stone column reinforced foundations. J. Geotech Geoenviron Eng 127(7):597–603

    Article  Google Scholar 

  • Han J, Ye SL (2002) A theoretical solution for consolidation rates of stone column-reinforced foundations accounting for smear and well resistance effects. Int J Geomech 2(2):135–151

    Article  Google Scholar 

  • Han J, Gabr MA (2002) Numerical analysis of geosynthetic reinforced and pile-supported earth platforms over soft soil. J. Geotech Geoenviron Eng 128(1):44–53

    Article  Google Scholar 

  • Hansbo S (1960) Consolidation of clay with special reference to influence of vertical sand drains. In: Proceedings No. 18, Swedish Geotechnical Institute, Stockholm

  • Hansbo S (1981) Consolidation of fine-grained soils by prefabricated drains. In: Proceedings of 10th international conference on soil mechanics and foundation engineering, vol 3. Balkema, Rotterdam, pp 677–682

  • Hird CC, Pyrah IC, Russell D (1992) Finite-element modeling of vertical drains beneath embankments on soft ground. Geotechnique 42(3):499–511

    Article  Google Scholar 

  • Indraratna B, Redana IW (1997) Plane strain modeling of smear effects associated with vertical drains. J Geotech Eng 123(5):474–478

    Article  Google Scholar 

  • Indraratna B, Balasubramaniam AS, Balachandran S (1992) Performance of test embankment constructed to failure on soft marine clay. J Geotech Eng 118(1):12–33

    Article  Google Scholar 

  • Indraratna B, Aljorany A, Rujikiatkamjorn C (2008) Analytical and numerical modeling of consolidation by vertical drain beneath a circular embankment. Int J Geomech 8(3):199–206

    Article  Google Scholar 

  • Indraratna B, Basack S, Rujikiyatkamjorn C (2013) A numerical solution of stone column improved soft soil considering arching, clogging and smear effects. J Geotech Geoenv Eng 139(3):377–394

    Article  Google Scholar 

  • Kondner RL (1963) Hyperbolic stress–strain response: cohesive soils. J Soil Mech Found Eng Div 89(1):115–143

    Google Scholar 

  • Lee JS, Pande GN (1998) Analysis of stone-column reinforced foundations. Int J Numer Anal Methods Geomech 12(12):1001–1020

    Article  Google Scholar 

  • Leo CJ (2004) Equal strain consolidation by vertical drains. J Geotech Geoenviron Eng 130(3):316–327

    Article  Google Scholar 

  • Madhav MR, Suresh K, Peter ECN (2008) Effect of creep on response of granular pile reinforced ground. In: Indian geotechnical conference, India, pp 276–280

  • Mitchell JK (1981) Soil improvement—state of the art report. In: Proceedings of 10th international conference on soil mechanics and foundation engineering, vol 4. Balkema, Rotterdam, pp 509–565

  • Mitchell JK, Huber TR (1985) Performanc of a stone column foundation. J Geotech Eng 111(2):205–223

    Article  Google Scholar 

  • Pasternak PL (1954) On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudartvennoe Izd Lib Stroit Arkhit, Moscow (in Russian)

    Google Scholar 

  • Poorooshasb HB, Meyerhof GG (1997) Analysis of behavior of stone columns and lime columns. Comput Geotech 20(1):47–70

    Article  Google Scholar 

  • Priebe HJ (1995) The design of vibro replacement. Ground Eng 28(10):31–37

  • Shahu JT, Madhav MR, Hayashi S (2000) Analysis of soft ground-granular pile-granular mat system. Comput Geotech 27(1):45–62

    Article  Google Scholar 

  • Sharma JSN (1989) Application of Pasternak model concept for reinforced earth walls and embankments. Ph.D. thesis, Indian Institute of Technology, Kanpur

  • Shukla SK, Chandra S (1994) A generalized mechanical model for geosynthetic-reinforced foundation soil. Geotext Geomembr 13(12):813–825

    Article  Google Scholar 

  • Tan SA, Tjahyono S, Oo KK (2008) Simplified plane-strain modeling of stone-column reinforced ground. J Geotech Geoenviron Eng 134(2):185–194

    Article  Google Scholar 

  • Walker R, Indraratna B (2006) Vertical drain consolidation with parabolic distribution of permeability in smear zone. J Geotech Geoenviron Eng 132(7):937–941

    Article  Google Scholar 

  • Walker R, Indraratna B (2007) Vertical drain consolidation with overlapping smear zones. Geotechnique 57(5):463–467

    Article  Google Scholar 

  • Wang G (2009) Consolidation of soft clay foundation reinforced by stone columns under time-dependent loadings. J Geotech Geoenviron Eng 135(12):1922–1931

    Article  Google Scholar 

  • Yoshikuni H, Nakanodo H (1974) Consolidation of fine-grained soils by drain wells with finite permeability. Soils Found 14(2):35–46

    Article  Google Scholar 

  • Zhu G, Yin H (2004) Consolidation analysis of soil with vertical and horizontal drainage under ramp loading considering smear effects. Geotex Geomembr 22:63–74

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support provided by SERB, Department of Science and Technology, India for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Deb.

Appendix: Rate of Consolidation

Appendix: Rate of Consolidation

Figure 20 shows ith equivalent stone ring and radial flow from the influence zone of the stone ring. Following Indraratna et al. (2008), the rate of flow in the radial direction from the inner impermeable boundary to the hollow cylindrical column wall is expressed by Darcy’s law

$$\frac{\partial Q}{\partial t} = \frac{{k_{h} }}{{\gamma_{w} }}\frac{\partial u}{\partial r}A$$
(31)

where Q is the flow in soil, u is the excess pore water pressure, γ w is the unit weight of water, k h is the coefficient of horizontal permeability of soft soil, t is the time and A is the cross-sectional area of the flow at a distance r and can be expressed as 2πr(dz), r is radial distance from center of embankment.

Fig. 20
figure 20

Single stone ring and its influenced zone

The rate of volume in the vertical direction of the soil can be written as

$$\frac{\partial V}{\partial t} = \frac{\partial \varepsilon }{\partial t}\pi \left\{ {\left( {r_{i} - S_{e} /2} \right)^{2} - r^{2} } \right\}dz$$
(32)

where V is the volume change of the soil, ε is the vertical strain, r i is the radius of ith stone ring, S e is spacing between equivalent stone rings. Assuming radial flow rate is equal to the rate of volume change of the soil in the vertical direction, the excess pore pressure gradient for the idealized foundation can be expressed as:

$$\frac{\partial u}{\partial r} = \frac{1}{2}\frac{{\gamma_{w} }}{{k_{h} }}\frac{\partial \varepsilon }{\partial t}\frac{{\left( {r_{i} - {{S_{e} } \mathord{\left/ {\vphantom {{S_{e} } 2}} \right. \kern-0pt} 2}} \right)^{2} - r^{2} }}{r}\quad {\text{for}}\;r_{i} - {{S_{e} } \mathord{\left/ {\vphantom {{S_{e} } 2}} \right. \kern-0pt} 2} \le r \le r_{i} - {{t_{c} } \mathord{\left/ {\vphantom {{t_{c} } 2}} \right. \kern-0pt} 2}$$
(33)

where t c is the thickness of equivalent stone ring.

Integrating Eq. (33), one can have expression of excess pore pressure for inner and outer zone (as shown in Fig. 20) as:

$$u_{in} = \frac{{\gamma_{w} }}{{k_{h} }}\frac{\partial \varepsilon }{\partial t}\left[ {\left( {r_{i} - S_{e} /2} \right)^{2} \ln \left( {\frac{r}{{r_{i} - t_{c} /2}}} \right) - \frac{1}{2}\left\{ {r^{2} - \left( {r_{i} - t_{c} /2} \right)^{2} } \right\}} \right]\quad {\text{for}}\;r_{i} - {{S_{e} } \mathord{\left/ {\vphantom {{S_{e} } 2}} \right. \kern-0pt} 2} \le r \le r_{i} - {{t_{c} } \mathord{\left/ {\vphantom {{t_{c} } 2}} \right. \kern-0pt} 2}$$
(34)
$$u_{out} = \frac{{\gamma_{w} }}{{k_{h} }}\frac{\partial \varepsilon }{\partial t}\left[ {\left( {r_{i} + S_{e} /2} \right)^{2} \ln \left( {\frac{r}{{r_{i} + t_{c} /2}}} \right) - \frac{1}{2}\left\{ {r^{2} - \left( {r_{i} + t_{c} /2} \right)^{2} } \right\}} \right]\quad {\text{for}}\;r_{i} + {{t_{c} } \mathord{\left/ {\vphantom {{t_{c} } 2}} \right. \kern-0pt} 2} \le r \le r_{i} + {{S_{e} } \mathord{\left/ {\vphantom {{S_{e} } 2}} \right. \kern-0pt} 2}$$
(35)

The average excess pore pressure under axi-symmetric condition (\(\bar{u}_{axi}\)) can be written as:

$$\bar{u}_{axi} \pi \left\{ {\left( {r_{i} + S_{e} /2} \right)^{2} - (r_{i} + t_{c} /2){}^{2} + (r_{i} - t_{c} /2){}^{2} - \left( {r_{i} - S_{e} /2} \right)^{2} } \right\} = \int\limits_{{r_{i} - S_{e} /2}}^{{r_{i} - t_{c} /2}} {2\pi u_{in} rdr + } \int\limits_{{r_{i} + t_{c} /2}}^{{r_{i} + S_{e} /2}} {2\pi u_{out} rdr}$$
(36)

After substituting Eqs. (34) and (35) and integrating Eq. (36) one can get

$$\overline{u}_{axi} = \frac{{\gamma_{w} }}{{k_{h} }}\frac{\partial \varepsilon }{\partial t}\frac{1}{8}d_{e}^{2} \mu_{axi}$$
(37)

where d e is the diameter of unit cell, and

$$\begin{aligned} \mu_{axi} & = \frac{1}{{r_{i} \left( {S_{e} - t_{c} } \right)}}\left[ {2\left( {r_{i} - 0.5S_{e} } \right)^{4} \ln \frac{{r_{i} - 0.5t_{c} }}{{r_{i} - 0.5S_{e} }} + \frac{1}{4}\left( {2r_{i} S_{e} - 0.5S_{e}^{2} - 2r_{i} t_{c} + 0.5t_{c}^{2} } \right)\left( { - 2r_{i}^{2} + 3r_{i} S_{e} - 0.75S_{e}^{2} - r_{i} t_{c} + 0.25t_{c}^{2} } \right)} \right. \\ & \quad \left. { + 2\left( {r_{i} + 0.5S_{e} } \right)^{4} \ln \frac{{r_{i} + 0.5S_{e} }}{{r_{i} + 0.5t_{c} }} - \frac{1}{4}\left( {2r_{i} S_{e} + 0.5S_{e}^{2} - 2r_{i} t_{c} - 0.5t_{c}^{2} } \right)\left( {2r_{i}^{2} + 3r_{i} S_{e} + 0.75S_{e}^{2} - r_{i} t_{c} - 0.25t_{c}^{2} } \right)} \right] \\ \end{aligned}$$
(38)

Substituting r i  = iS e , S e  = ψd e , t c  = β (r 2 c /S e ) and r c /S e  = n c in Eq. (38), one can get

$$\begin{aligned} \mu_{axi} & = \frac{{\psi^{2} }}{{i\left( {1 - \beta n_{c}^{2} } \right)}}\left[ {2\left( {i - 0.5} \right)^{4} \ln \frac{{i - 0.5\beta n_{c}^{2} }}{i - 0.5} + \frac{1}{4}\left( {2i - 0.5 - 2i\beta n_{c}^{2} + 0.5\beta^{2} n_{c}^{4} } \right)\left( { - 2i^{2} + 3i - 0.75 - i\beta n_{c}^{2} + 0.25\beta^{2} n_{c}^{4} } \right)} \right. \\ & \quad \left. { + 2\left( {i + 0.5} \right)^{4} \ln \frac{i + 0.5}{{i + 0.5\beta n_{c}^{2} }} - \frac{1}{4}\left( {2i + 0.5 - 2i\beta n_{c}^{2} - 0.5\beta^{2} n_{c}^{4} } \right)\left( {2i^{2} + 3i + 0.75 - i\beta n_{c}^{2} - 0.25\beta^{2} n_{c}^{4} } \right)} \right] \\ \end{aligned}$$
(39)

where r c is the radius of the stone column (d c /2), Ψ is equal to 0.865 and 1.0 for triangular and square arrangement of stone columns, respectively and β is equal to 3 and 4 for triangular and square arrangement of stone columns, respectively. One can relate the excess pore pressure (\(\bar{u}_{axi}\)) with diameter ratio (N = d e /d c ) by substituting n c  = 1/(2ΨN) in Eq. (38).

By substituting ∂ε/∂t = −(m vs m vc A s )/(m vc A s  + m vs A c ) (∂\(\bar{u}\)/∂t) for stone column-improved ground (Han and Ye 2001) in Eq. (37), one can get

$$\overline{u}_{axi} = - \frac{{\gamma_{w} }}{{k_{h} }}\frac{{m_{vs} m_{vc} A_{s} }}{{m_{vc} A_{s} + m_{vs} A_{c} }}\frac{{\partial \overline{u} }}{\partial t}\frac{1}{8}d_{e}^{2} \mu_{axi} = - \frac{{\gamma_{w} }}{{k_{h} }}\frac{{m_{vs} }}{\lambda }\frac{{\partial \overline{u} }}{\partial t}\frac{1}{8}d_{e}^{2} \mu_{axi}$$
(40)

where

$$\lambda = 1 + n_{s} \frac{1}{{\left( {\frac{{4\psi^{2} }}{\beta }} \right)N^{2} - 1}}$$
(41)
$$n_{s} = \xi \frac{{E_{c} }}{{E_{s} }}$$
(42)
$$\xi = \frac{{\left( {1 + \nu_{s} } \right)\left( {1 - 2\nu_{s} } \right)\left( {1 - \nu_{c} } \right)}}{{\left( {1 + \nu_{c} } \right)\left( {1 - 2\nu_{c} } \right)\left( {1 - \nu_{s} } \right)}}$$
(43)
$$\frac{{A_{c} }}{A} = a_{s} = \beta n_{c}^{2}$$
(44)
$$A = A_{c} + A_{s}$$
(45)

and \(\bar{u}\) is the average excess pore water pressure, ξ is the Poisson ratio factor, A c and A s are cross-sectional areas of the stone ring and the surrounding soft soil, respectively, A is the total area, a s is the area replacement ratio, m vc and m vs are the coefficient of volume compressibility of stone column and soft soil, respectively, E c and E s are elastic modulus of stone column and soft soil, respectively, ν c and ν s are the Poisson ratios of stone column and soft soil, respectively. The n s is steady-stress concentration ratio can also be written as:

$$n_{s} = \frac{{q_{c} }}{{q_{s} }}$$
(46)

After rearranging Eq. (40), one can write

$$\frac{1}{{\overline{u}_{axi} }}\partial \overline{u} = - \frac{8}{{\mu_{axi} }}\frac{{c_{r}^{\prime} }}{{d_{e}^{2} }}\partial t$$
(47)

where \(c_{r}^{\prime}\) is the modified coefficient of radial consolidation and can be expressed as:

$$c_{r}^{\prime} = c_{r} \lambda = \frac{{\lambda k_{h} }}{{m_{vs} \gamma_{w} }}$$
(48)

Integrating Eq. (47) with initial boundary condition \(\overline{u}\) = σ i at t = 0, one can get

$$\frac{{\overline{u}_{axi} }}{{\sigma_{i} }} = \exp \left( { - \frac{{8T_{r}^{\prime} }}{{\mu_{axi} }}} \right)$$
(49)

where σ i is the initial vertical stress, \(T_{r}^{\prime}\) is the modified time factor that can be written as:

$$T_{r}^{\prime} = {{c_{r}^{\prime} t} \mathord{\left/ {\vphantom {{c_{r}^{\prime} t} {d_{e}^{2} }}} \right. \kern-0pt} {d_{e}^{2} }}$$
(50)

Therefore, the degree of consolidation (U axi ) of stone column improved soft ground under axi-symmetric condition at any time t can be written as:

$$U_{axi} = 1 - \exp \left( { - \frac{{8T_{r}^{\prime} }}{{\mu_{axi} }}} \right)$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Deb, K. Modeling of Stone Column-Supported Embankment Under Axi-Symmetric Condition. Geotech Geol Eng 35, 707–730 (2017). https://doi.org/10.1007/s10706-016-0136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-016-0136-1

Keywords

Navigation