Skip to main content
Log in

Statistical Analysis of Landslide Events in Central America and their Run-out Distance

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

Statistical analyses of landslide deposits from similar areas provide information on dynamics and rheology, and are the basis for empirical relationships for the prediction of future events. In Central America landslides represent an important threat in both volcanic and non-volcanic areas. Data, mainly from 348 landslides in Nicaragua, and 19 in other Central American countries have been analyzed to describe landslide characteristics and to search for possible correlations and empirical relationships. The mobility of a landslide, expressed as the ratio between height of fall (H) and run-out distance (L) as a function of the volume and height of fall; and the relationship between the height of fall and run-out distance were studied for rock falls, slides, debris flows and debris avalanches. The data show differences in run-out distance and landslide mobility among different types of landslides and between debris flows in volcanic and non-volcanic areas. The new Central American data add to and seem consistent with data published from other regions. Studies combining field observations and empirical relationships with laboratory studies and numerical simulations will help in the development of more reliable empirical equations for the prediction of landslide run-out, with applications to hazard zonation and design of optimal risk mitigation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvarado GE, Sigarán C, Pérez W (2000) Vulcanismo: sus productos y geoformas. In: Denyer P, Kussmaul S (eds) Geologia de Costa Rica. Editorial Tecnológica de Costa Rica, pp 133–154

  • Alvarado GE, Vega E, Chaves J, Vásquez M (2004) Los grandes deslizamientos (volcánicos y no volcánicos) de tipo debris avalanche en Costa Rica. Rev Geol Am Central 30:83–99

    Google Scholar 

  • Álvarez A, Devoli G, Chávez G, Mayorga E (2003a) Amenazas por Deslizamientos en Ciudad Sandino, Estelí y Ocotal. Chapter III In Amenazas geológicas en Ciudad Sandino, Estelí y Ocotal, Nicaragua Report prepared for the Project: “Elaboración de mapas de riesgos naturales en tres zonas de intervención del PRRAC”. Programa Regional de Reconstrucción de America Central (PRRAC), European Union. Dirección General de Geofísica, Instituto Nicaragüense d Estudios Territoriales, Managua, Nicaragua

  • Álvarez A, Devoli G, Chávez G, Talavera E (2003b) Lahares La Chirca en Octubre de 2002, volcán Concepción, Isla de Ometepe.Rivas. Internal report. Instituto Nicaragüense de Estudios Territoriales, Managua, Nicaragua

    Google Scholar 

  • Blanco FA, Burgos EA, Nejia M (2002) Estudio de amenaza por lahar en El Salvador: revision de casos historicos y calibracion de herramientas para la evaluacion de amenaza [senior thesis]. Universidad Centroamericana “José Simeón Cañas, El Salvador, 158 p

  • Capra L, Macias JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico—behavior and implications for hazard assessment. J Volcanol Geotherm Res 113:81–110

    Article  Google Scholar 

  • Carrasco-Nuñez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59:35–46

    Article  Google Scholar 

  • Coe JA, Godt JW, Baum RL, Bucknam RC, Michael JA (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Taylor&Francis group, vol 1, pp 69–78

  • Connor C, Connor L, Sheridan M (2006) Assessment of October 2005 debris flows at Panabaj, Guatemala, and recommendations for Hazard Mitigation. Report prepared for OXFAM GB

  • Corominas J (1996) The angle of reach as mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation. US Geological Survey Bulletin 1861, 29 p

  • Crosta GB, Imposinato S, Roddeman D, Chiesa S, Moia F (2005) Small fast-moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Eng Geol 79:185–214

    Article  Google Scholar 

  • Cruden D, Varnes D (1996) Landslide types and processes. In: Turner A, Schuster R (eds) Landslides: investigation and mitigation. Transportation Research Board, National Research Council, vol 247, pp 36–75

  • Devoli G, Morales A, Høeg K (2007a) Historical landslides in Nicaragua—collection and analysis of data. Landslides 4:5–18

    Article  Google Scholar 

  • Devoli G, Strauch W, Chávez G, Høeg K (2007b) A landslide database for Nicaragua: a tool for landslide hazard management [online]. Landslides. doi: 10.1007/s10346-006-0074-8. Published online 9 January 2007

  • Evans SG, Bent AL (2004) The Las Colinas landslide, Santa Tecla: a highly destructive flowslide triggered by the January 13, 2001, El Salvador earthquake. In: Rose WI, Bommer JJ, Lopez DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador. Geological Society of America, Special paper 375, pp 25–37. Boulder Colorado

  • Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2005) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7:89–101

    Article  Google Scholar 

  • Fannin RJ, Wise MP (2000) An empirical-statistical model for debris flow travel distance. Can Geotech J 33:260–271

    Google Scholar 

  • Fenzl N (1989) Nicaragua: Geografia, Clima, Geologia y Hidrogeología. Belém, UFPA/INETER/INAN. Instituto Nicaragüense de Estudios Territoriales, Managua, Nicaragua

    Google Scholar 

  • Finlay PJ, Mostyn GR, Fell R (1999) Landslide risk assessment: prediction of travel distance. Can Geotech J 36:556–562

    Article  Google Scholar 

  • Glicken H (1998) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. Geol Surv Jpn Bull 49(2/3):55–106

    Google Scholar 

  • Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97(B6):9063–9071

    Article  Google Scholar 

  • Heyerdahl H, Harbitz, CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, Devoli G, Buezo S, Diaz M, Hernandez W (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador. Practical Mitigation. Paper presented at the International Conference on Fast Slope Movements, Sorrento, 2003

  • Hsü KJ (1975) Catastrophic debris strams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140

    Article  Google Scholar 

  • Hungr O (2005) Classification and terminology. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Berlin Heidelberg, Praxis. pp 9–23

    Chapter  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci VII(3):221–238

    Google Scholar 

  • INETER-AECI (2004) Sistema de Información geográfica aplicado a la cartografía de multiamenazas en el Departamento de Nueva Segovia. Amenaza Naturales por sismo, sequia y huracanes. Internal report Instituto Nicaragüense de Estudios Territoriales and Agencia Española de Cooperación Internacional, Managua, Nicaragua

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. GSA Bull 110(8):972–984

    Article  Google Scholar 

  • Jakob M (2005a) A size classification for debris flows. Eng Geol 79:151–161

    Article  Google Scholar 

  • Jakob M (2005b) Debris flow hazard analysis. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Berlin Heidelberg, Praxis pp 411–438

    Chapter  Google Scholar 

  • Kanji MA, Massad F, Cruz PT (2003) Debris flows in areas of residual soils: occurrence and characteristics. Paper presented at the International Workshop on Occurrence and Mechanism of Flows in Natural Slopes and Earthfills, 2003, Sorrento, vol 1. pp 1–13

  • Legros F (2002) The mobility of long-run-out landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Li T (1983) A mathematical model for predicting the extent of a major rockfall. Zeitschrift für Geomorphologie Neue Folge 27:473–482

    Google Scholar 

  • Naranjo JA, Francis P (1987) High velocity debris avalanche at Lastarria volcano in the north Chilean Andes. Bull Volcanol 49:509–514

    Article  Google Scholar 

  • Okura Y, Jitahara H, Kawanami A, Kurokawa U (2003) Topography and volume effects on travel distance of surface failure. Eng Geol 67:243–254

    Article  Google Scholar 

  • Pierson TC, Costa JE (1987) A rheologic classification of subaerial sediment-water flows. In: Costa JE, Wieczorek GF (eds) Debris flows/avalanches: geological society of America reviews in engineering geology, vol VII. pp 1–12

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77

    Article  Google Scholar 

  • Rickenmann D (2005) Run-out prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Berlin Heidelberg, Praxis, pp 305–321

    Chapter  Google Scholar 

  • Rymer MJ (1987) The San Salvador earthquake of October 10, 1986–Geological aspects. Earthquake Spectra 3:435–463

    Article  Google Scholar 

  • Scheidegger A (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Schuster RL, Crandell DR (1984) Catastrophic debris avalanches from volcanoes: paper presented at the IV Symposium on Landslides, Toronto, vol 1, pp 567–572

  • Scott KM (1988) Origins, behavior, and sedimentology of lahars and lahar-runout flows in the Toutle-Cowlitz river system. U.S. Geological Survey Professional Paper 1447-A

  • Scott KM, Vallance JW, Pringle PT (1995) Sedimentology, behavior, and hazards of debris flows at Mount Rainier. Washington, US Geological Survey Professional Paper 1547

  • Scott KM, Macías JL, Naranjo JA, Rodríguez S, McGeehin JP (2001) Catastrophic debris flows transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. US Geological Survey Professional Paper 1630

  • Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devóli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Proc Land 30(1):59–79

    Article  Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459

    Article  Google Scholar 

  • Siebert L, Alvarado GE, Vallance JW, van Wyk de Vries B (2006) Large-volume volcanic edifice failures in Central America and associated hazards. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America: Geological Society of America. Special paper 412, pp 1–26 doi: 10.1130/2006.2412(01)

  • Skermer NA, VanDine DF (2005) Debris flows in history. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Berlin Heidelberg, Praxis, pp 25–47

    Chapter  Google Scholar 

  • Strauch W (2004) Deslizamientos, flujos de lodo e inundaciones en el Cerro Musún, junio 2004. In: Bulletin “Sismos y Volcanes de Nicaragua”, June 2004. Dirección General de Geofísica, Instituto Nicaragüense de Estudios Territoriales, Managua, Nicaragua

  • Ui T (1983) Volcanic dry avalanche deposits-identification and comparison with non volcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150

    Article  Google Scholar 

  • Ui T, Yamamoto H, Suzuki-Kamata K (1986) Characterization of debris avalanche deposits in Japan. J Volcanol Geotherm Res 29:231–243

    Article  Google Scholar 

  • Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 617–626

  • Vallance J W (2000) Lahars. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 601–616

  • Vallance JW (2005) Volcanic debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Berlin Heidelberg, Praxis, pp 247–271

    Chapter  Google Scholar 

  • Vallance JW, Scott KM (1997) The Osceola Mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bull 109(2):143–163

    Google Scholar 

  • Weyl R (1980) Geology of central America. Second, completely revised edition, 371 pp, Gebruder Borntraeger. Stuttgart, Berlin

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by the Research Council of Norway through the Centre of Excellence “International Centre for Geohazards” (ICG ). Their support is gratefully acknowledged. The authors also wish to thank José Cepeda, who provided data from El Salvador, and Carolina Sigarán and Guillermo Alvarado who provided data from Costa Rica. Dr. Farrokh Nadim provided very useful comments and suggestions in reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Devoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devoli, G., De Blasio, F.V., Elverhøi, A. et al. Statistical Analysis of Landslide Events in Central America and their Run-out Distance. Geotech Geol Eng 27, 23–42 (2009). https://doi.org/10.1007/s10706-008-9209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-008-9209-0

Keywords

Navigation