Skip to main content

Advertisement

Log in

Assessing agronomic and environmental implications of different N fertilisation strategies in subtropical grain cropping systems on Oxisols

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DM:

Dry matter

Ndff:

N derived from labelled fertiliser

References

  • Abalos D, Jeffery S, Sanz-Cobena A, Guardia G, Vallejo A (2014) Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric Ecosyst Environ 189:136–144. doi:10.1016/j.agee.2014.03.036

    Article  CAS  Google Scholar 

  • Anderson EL (1988) Tillage and N fertilization effects on maize root growth and root: shoot ratio. Plant Soil 108:245–251. doi:10.1007/BF02375655

    Article  Google Scholar 

  • Australian Bureau of Meteorology. http://www.bom.gov.au/

  • Bell MJ, Harch GR, Bridge BJ (1995) Effects of continuous cultivation on Ferrosols in subtropical southeast Queensland. I. Site characterization, crop yields and soil chemical status. Aust J Agric Res 46:237–253. doi:10.1071/AR9950237

    Article  Google Scholar 

  • Bell M, Harch G, Moody P (2012) Diversification from cropping into mixed crop-livestock systems–the sustainability risks posed by hay removal from pasture or forage blocks. Red 18:75

    Google Scholar 

  • Blesh J, Drinkwater LE (2014) Retention of 15 N-labeled fertilizer in an illinois prairie soil with winter rye. Soil Sci Soc Am J 78:496–508. doi:10.2136/sssaj2013.09.0403

    Article  CAS  Google Scholar 

  • Blum A (2004) Sorghum physiology physiology and biotechnology integration for plant breeding. CRC Press, Boca Raton, pp 141–224

    Google Scholar 

  • Borlaug N, Dowswell C (1997) The acid lands: one of agriculture’s last frontiers plant-soil interactions at low pH. Brazil: Brazilian Soil Science Society, pp 5–15

  • Buol SW, Eswaran H (1999) Oxisols Adv Agron 68:151–195

    Article  Google Scholar 

  • Carter MR, Gregorich EG (2007) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Chaves B, Opoku A, De Neve S, Boeckx P, Van Cleemput O, Hofman G (2006) Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues. Biol Fertil Soils 43:62–68. doi:10.1007/s00374-005-0061-6

    Article  CAS  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297. doi:10.1016/j.agee.2003.09.018

    Article  Google Scholar 

  • Dalal R, Mayer R (1986) Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. V. Rate of loss of total nitrogen from the soil profile and changes in carbon: nitrogen ratios. Soil Research 24:493–504. doi:10.1071/SR9860493

    Article  Google Scholar 

  • De Antoni Migliorati M, Bell MJ, Grace PR, Scheer C, Rowlings D, Liu S (2015) Legume pastures reduce N2O emissions intensity in subtropical cereal cropping systems

  • De Antoni Migliorati M, Scheer C, Grace PR, Rowlings DW, Bell M, McGree J (2014) Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat–maize cropping system. Agric Ecosyst Environ 186:33–43. doi:10.1016/j.agee.2014.01.016

    Article  Google Scholar 

  • Demotes-Mainard S, Pellerin S (1992) Effect of mutual shading on the emergence of nodal roots and the root/shoot ratio of maize. Plant Soil 147:87–93. doi:10.1007/BF00009374

    Article  Google Scholar 

  • Dourado-Neto D et al (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152. doi:10.2136/sssaj2009.0192

    Article  CAS  Google Scholar 

  • Eagle AJ, Olander LP, Henry LR, Haugen-Kozyra K, Millar N, Robertson GP (2012) Greenhouse gas mitigation potential of agricultural land management in the United States: a synthesis of the literature, 3rd edn. Nicholas Institute for Environmental Policy Solutions, Duke University, Durham

    Google Scholar 

  • Fageria N, Baligar V (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  • FAO (1998) World reference base for soil resources. World Soil Resources Reports, vol 84, pp 21–22

  • FAOSTAT (2013) FAOSTAT database, Food and Agriculture Organization of the United Nations. http://faostat.fao.org/

  • Fernandes Cruvinel ÊB, Bustamante MMdC, Kozovits AR, Zepp RG (2011) Soil emissions of NO, N2O and CO2 from croplands in the savanna region of central. Brazil Agriculture, Ecosystems & Environment 144:29–40 doi:10.1016/j.agee.2011.07.016

  • Fischer T (2009) Brazilian Cerrado: current status and prospects as a food bowl for the world. Agricultural Science 21:32

    Google Scholar 

  • Fox RH, Myers RJK, Vallis I (1990) The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant Soil 129:251–259. doi:10.1007/BF00032420

    CAS  Google Scholar 

  • Freney JR, Chen DL, Mosier AR, Rochester IJ, Constable GA, Chalk PM (1993) Use of nitrification inhibitors to increase fertilizer nitrogen recovery and lint yield in irrigated cotton. Fert Res 34:37–44. doi:10.1007/BF00749958

    Article  CAS  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255–277. doi:10.1007/BF00032251

    Article  CAS  Google Scholar 

  • IAEA (2001) Use of isotope and radiation methods in soil and water management and crop nutrition training course series 14 0205-Soil fertility and irrigation

  • Ichir LL, Ismaili M, Hofman G (2003) Recovery of 15 N labeled wheat residue and residual effects of N fertilization in a wheat–wheat cropping system under Mediterranean conditions. Nutr Cycl Agroecosyst 66:201–207. doi:10.1023/A:1023976600760

    Article  CAS  Google Scholar 

  • Jensen E, Peoplles M, Boddey R, Gresshoff P, Hauggaard-Nielsen H, Alves B, Morrison M (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32:329–364. doi:10.1007/s13593-011-0056-7

    Article  CAS  Google Scholar 

  • Kawakami EM, Oosterhuis DM, Snider JL, Mozaffari M (2012) Physiological and yield responses of field-grown cotton to application of urea with the urease inhibitor NBPT and the nitrification inhibitor DCD. Eur J Agron 43:147–154. doi:10.1016/j.eja.2012.06.005

    Article  CAS  Google Scholar 

  • Kumar K, Goh KM (2002) Recovery of 15 N-labelled fertilizer applied to winter wheat and perennial ryegrass crops and residual 15 N recovery by succeeding wheat crops under different crop residue management practices. Nutr Cycl Agroecosyst 62:123–130. doi:10.1023/A:1015595202542

    Article  CAS  Google Scholar 

  • Linzmeier W, Schmidhalter U, Gutser R (2001) Effect of DMPP on nitrification and N losses (nitrate, NH3, N2O) from fertilizer nitrogen in comparison to DCD VDLUFA-Institution Series Congress 52:485–488

  • Liu C, Wang K, Zheng X (2013) Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences 10:2427–2437. doi:10.5194/bg-10-2427-2013

    Article  CAS  Google Scholar 

  • Mahmood T, Ali R, Latif Z, Ishaque W (2011) Dicyandiamide increases the fertilizer N loss from an alkaline calcareous soil treated with 15 N-labelled urea under warm climate and under different crops. Biol Fertil Soils 47:619–631. doi:10.1007/s00374-011-0559-z

    Article  CAS  Google Scholar 

  • Manschadi A, Hammer G, Christopher J, deVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129. doi:10.1007/s11104-007-9492-1

    Article  CAS  Google Scholar 

  • Mubarak AR, Rosenani AB, Anuar AR, Siti Zauyah D (2003) Recovery of nitrogen from maize residue and inorganic fertilizer in a maize-groundnut rotation system in humid tropics of Malaysia. Commun Soil Sci Plant Anal 34:2375–2394. doi:10.1081/CSS-120024774

    Article  CAS  Google Scholar 

  • Müller A, Gattinger A (2013) Conceptual and practical aspects of climate change mitigation through agriculture: reducing greenhouse gas emissions and increasing soil carbon sequestration Trade and Environment Review 2013: wake up before it is too late: Make agriculture truly sustainable now for food security in a changing climate (UNCTAD/DITC/TED/2012/3)

  • Mulongoy K, Kang B (1986) The role and potential of forage legumes in alley cropping, live mulch and rotation systems in humid and subhumid tropical Africa Potentials of Forage Legumes in Farming Systems of Sub-Saharan Africa, ILCA, Addis Ababa, Ethiopia pp 212–231

  • Nanda D (2013) Critical stages in the life of a corn plant. Indiana Prairie Farmer 187:36

    Google Scholar 

  • Park SE, Webster TJ, Horan HL, James AT, Thorburn PJ (2010) A legume rotation crop lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crops Research 119:331–341. doi:10.1016/j.fcr.2010.08.001

    Article  Google Scholar 

  • Pasda G, Hähndel R, Zerulla W (2001) Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol Fertil Soils 34:85–97. doi:10.1007/s003740100381

    Article  CAS  Google Scholar 

  • Pilbeam CJ (1995) Effect of climate on the recovery in crop and soil of15 N-labelled fertilizer applied to wheat. Fertilizer Research 45:209–215. doi:10.1007/BF00748591

    Article  Google Scholar 

  • Rochester IJ, Peoples MB, Hulugalle NR, Gault RR, Constable GA (2001) Using legumes to enhance nitrogen fertility and improve soil condition in cotton cropping systems. Field Crops Research 70:27–41. doi:10.1016/S0378-4290(00)00151-9

    Article  Google Scholar 

  • Sanchez CA, Blackmer AM (1988) Recovery of anhydrous ammonia-derived nitrogen-15 during three years of corn production in Iowa. Agron J 80:102–108. doi:10.2134/agronj1988.00021962008000010023x

    Article  CAS  Google Scholar 

  • Satorre EH, Slafer GA (1999) Wheat: ecology and physiology of yield determination. Haworth Press Inc, Philadelphia

    Google Scholar 

  • Scheid Lopes A, Guilherme LG, Ramos S (2012) The Saga of the Agricultural Development of the Brazilian Cerrado International Potash Institute

  • Siddique KHM, Belford RK, Tennant D (1990) Root:shoot ratios of old and modern, tall and semi-dwarf wheats in a mediterranean environment. Plant Soil 121:89–98. doi:10.1007/BF00013101

    Article  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutr Cycl Agroecosyst 48:139–153. doi:10.1023/A:1009734514983

    Article  CAS  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Global Biogeochem Cycles 13:647–662. doi:10.1029/1999GB900015

    Article  CAS  Google Scholar 

  • Ssali H (1990) Initial and residual effects of nitrogen fertilizers on grain yield of a maize/bean intercrop grown on a Humic Nitosol and the fate and efficiency of the applied nitrogen. Fert Res 23:63–72. doi:10.1007/BF01063332

    Article  CAS  Google Scholar 

  • Thomas RJ, Ayarza MA (1999) Sustainable land management for the Oxisols of the Latin American savannas: dynamics of soil organic matter and indicators of soil quality. vol 312. CIAT

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • UNFPA (2011) State of the world population 2011 United Nations Population Fund, New York, New York, USA

  • Usda N (1998) Keys to soil taxonomy. USDA, Washington DC

    Google Scholar 

  • Vanlauwe B, Sanginga N, Merckx R (2001) Alley cropping with Senna siamea in South-western Nigeria: II. Dry matter, total N, and urea-derived N dynamics of the Senna and maize roots. Plant Soil 231:201–210. doi:10.1023/A:1010365529073

    Article  CAS  Google Scholar 

  • Veldkamp E, Keller M (1997) Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr Cycl Agroecosyst 48:69–77. doi:10.1023/A:1009725319290

    Article  CAS  Google Scholar 

  • Vieira RF, Mendes IC, Reis-Junior FB, Hungria M (2010) Symbiotic nitrogen fixation in tropical food grain legumes: current status. Springer, Berlin

    Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15. doi:10.1007/BF00009558

    Article  Google Scholar 

  • Walters DT, Malzer GL (1990) Nitrogen Management and Nitrification Inhibitor Effects on Nitrogen-15 Urea: II. Nitrogen Leaching and Balance. Soil Sci Soc Am J 54:122–130. doi:10.2136/sssaj1990.03615995005400010019x

    Article  Google Scholar 

  • Weiske A, Benckiser G, Herbert T, Ottow J (2001a) Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol Fert Soils 34:109–117. doi:10.1007/s003740100386

    Article  CAS  Google Scholar 

  • Weiske A, Benckiser G, Ottow JG (2001b) Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutr Cycl Agroecosyst 60:57–64. doi:10.1023/A:1012669500547

    Article  CAS  Google Scholar 

  • Wolt J (2004) A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Midwestern USA Nutrient Cycling in Agroecosystems 69:23–41. doi:10.1023/B:FRES.0000025287.52565.99

    CAS  Google Scholar 

  • Xu ZH, Saffigna PG, Myers RJK, Chapman AL (1992) Nitrogen fertilizer in leucaena alley cropping. I. Maize response to nitrogen fertilizer and fate of fertilizer-15 N. Fertilizer Research 33:219–227. doi:10.1007/BF01050877

    Article  CAS  Google Scholar 

  • Yang X, Wang W, Ye Z, He Z, Baligar V (2004) Physiological and genetic aspects of crop plant adaptation to elemental stresses in acid soils. In: Wilson MJ, He Z, Yang X (eds) The red soils of China. Springer, Netherlands, pp 171–218. doi:10.1007/978-1-4020-2138-1_13

  • Zhang L et al (2010) Fate of applied urea 15N in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Plant Soil and Environment 56:8–15

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Gary Harch for the field assistance, Rachel Nichols and John Taylor for the chemical analyses, and the Department of Agriculture, Fisheries and Forestry (DAFF) for providing the field site, the machinery and the staff for the farming operations. The authors also wish to thank Beverly Henry and the anonymous reviewers for the valuable comments on an earlier version of the manuscript. This research was conducted as part of the National Agricultural Nitrous Oxide Research Program (NANORP) funded by the Australian Department of Agriculture and managed by the Grain Research and Development Corporation (GRDC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano De Antoni Migliorati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Antoni Migliorati, M., Bell, M.J., Grace, P.R. et al. Assessing agronomic and environmental implications of different N fertilisation strategies in subtropical grain cropping systems on Oxisols. Nutr Cycl Agroecosyst 100, 369–382 (2014). https://doi.org/10.1007/s10705-014-9655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-014-9655-4

Keywords

Navigation