Skip to main content

Advertisement

Log in

Watershed nitrogen export model related to changing nitrogen balance and hydrology in the Changjiang River basin

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Rivers play a key role in linking between terrestrial and aquatic ecosystems, and are becoming important sinks of nitrogen (N). However, quantifying N export from terrestrial ecosystems to rivers at large scales is still challenging, due to the heterogeneous characteristics of watersheds in hydrology, land use, geology, climatology, etc. N export from terrestrial ecosystems to rivers is basically controlled by N balances and driven by hydrological processes. Here a model of watershed export coefficient (E ws ) of dissolved inorganic nitrogen (DIN) is proposed to describe the dynamic processes of DIN export to the river from non-point sources (NPS), with emphasis on the changing N balance and hydrology in the Changjiang River basin during the period 1970–2003. We found a significant relationship between E ws and the relative N surplus degree, which can predict the variation of E ws in the basin. Our study shows that E ws increased from 0.11 to 0.61 across the whole basin during the period, indicating E ws was dynamic rather than static through time. The amounts of NPS-DIN export to the river (W NPS ) increased from 0.22 × 103 to 4.54 × 103 kg km−2 year−1 in response to the increasing watershed N surplus during 1970–2003. The quick increase of W NPS and E ws demonstrate the diminishing capacity of terrestrial ecosystems to retain N as N surplus increased as a direct result of human activities. Our research helps researchers and policy makers to understand the mechanism of river N level in response to watershed N balance and hydrology processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behrendt H, Opitz D (1999) Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122. doi:10.1023/A:1003735225869

    Article  Google Scholar 

  • Bouwman AF, Kram T, Klein Goldewijk K (eds) (2006) Integrated modeling of global environmental change. An overview of IMAGE 2.4. Publ. 500110002/2006. Neth Environ Assess Agency, Bilthoven, Netherlands, p 228

    Google Scholar 

  • Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochem Cycles. doi:10.1029/2009GB003576

    Google Scholar 

  • Caraco NF, Cole JJ (1999) Human impact on nitrate export: an analysis using major world rivers. Ambio 28:167–170

    Google Scholar 

  • Chinese Ministry of Agriculture (1970–2003) China agriculture yearbooks (in Chinese), China Agricul. Press, Beijing

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. doi:10.1126/science.1167755

    Article  CAS  PubMed  Google Scholar 

  • Dentener F, Stevenson D, Ellingsen K et al (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594. doi:10.1021/es0523845

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Harrison JA, Kroeze C, Bakker EJ, Seitzinger SP (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles. doi:10.1029/2005GB002488

    Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996) Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139. doi:10.1007/BF02179825

    Article  CAS  Google Scholar 

  • Lewis DB, Grimm NB (2007) Hierarchical regulation of nitrogen export from urban catchments: interactions of storms and landscapes. Ecol Appl 17:2347–2364. doi:10.1890/06-0031.1

    Article  PubMed  Google Scholar 

  • Mander U, Kull A, Kuusemets V, Tamm T (2000) Nutrient runoff dynamics in a rural catchment: influence of land-use changes, climatic fluctuations and ecotechnological measures. Ecol Eng 14:405–417. doi:10.1016/S0925-8574(99)00064-6

    Article  Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65. doi:10.1023/A:1015775225913

    CAS  Google Scholar 

  • Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete BM, Kroeze C, Van Drecht G (2010) Global Nutrient Export from Watersheds 2 (NEWS 2): model development and implementation. Environ Model Softw 25:837–853. doi:10.1016/j.envsoft.2010.01.007

    Article  Google Scholar 

  • Mishima S, Endo A, Kohyama K (2010) Nitrogen and phosphate balance on crop production in Japan on national and prefectural scales. Nutr Cycl Agroecosyst 87:159–173. doi:10.1007/s10705-009-9324-1

    Article  CAS  Google Scholar 

  • Peierls BL, Caraco NF, Pace ML, Cole JJ (1991) Human influence on river nitrogen. Nature 350:386–387. doi:10.1038/350386b0

    Article  Google Scholar 

  • Pekarova P, Pekar J (1996) The impact of land use on stream water quality in Slovakia. J Hydrol 180:333–350. doi:10.1016/0022-1694(95)02882-X

    Article  CAS  Google Scholar 

  • Seitzinger S (2008) Nitrogen cycle—out of reach. Nature 452:162–163. doi:10.1038/452162a

    Article  CAS  PubMed  Google Scholar 

  • Seitzinger SP, Styles RV, Boyer EW, Alexander RB, Billen G, Howarth RW, Mayer B, Van Breemen N (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA. Biogeochemistry 57:199–237. doi:10.1023/A:1015745629794

    Article  Google Scholar 

  • Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from watersheds (NEWS) models and their application. Global Biogeochemical Cycles 19: GB4S01, doi: 10.1029/2005GB002606

  • Seitzinger SP, Bouwman AF, Kroeze C (2010) Preface to special section on past and future trends in nutrient export from global watersheds and impacts on water quality and eutrophication. Global Biogeochem Cycles. doi:10.1029/2009GB003587

    Google Scholar 

  • Soetaert K, Herman PMJ (1995) Nitrogen dynamics in the Westerschelde Estuary (SW Netherlands) estimated by means of the ecosystem model moses. Hydrobiologia 311:225–246. doi:10.1007/BF00008583

    Article  CAS  Google Scholar 

  • Stalnacke P, Vandsemb SM, Vassiljev A, Grimvall A, Jolankal G (2004) Changes in nutrient levels in some Eastern European rivers in response to large-scale changes in agriculture. Water Sci Technol 49:29–36

    CAS  PubMed  Google Scholar 

  • Stoddard JL (1994) Long term changes in watershed retention of nitrogen—Its causes and aquatic consequences. Adv Chem Ser 237:223–284. doi:10.1021/ba-1994-0237.ch008

    Article  CAS  Google Scholar 

  • Tumas R (2000) Evaluation and prediction of nonpoint pollution in Lithuania. Ecol Eng 14:443–451. doi:10.1016/S0925-8574(99)00068-3

    Article  Google Scholar 

  • Turner RE, Rabalais NN (1991) Changes in Mississippi river water-quality this century. Bioscience 41:140–147. doi:10.2307/1311453

    Article  Google Scholar 

  • Van Breemen N, Boyer EW, Goodale CL, Jaworski NA, Paustian K, Seitzinger SP, Lajtha K, Mayer B, Van Dam D, Howarth RW, Nadelhoffer KJ, Eve M, Billen G (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57:267–293. doi:10.1023/A:1006100128782

    Article  Google Scholar 

  • Veuger B, Middelburg JJ, Boschker HTS, Nieuwenhuize J, Van Rijswijk P, Rochelle-Newall EJ, Navarro N (2004) Microbial uptake of dissolved organic and inorganic nitrogen in Randers Fjord. Estuar Coast Shelf Sci 61:507–515. doi:10.1016/j.ecss.2004.06.014

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.2307/2269431

    Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520. doi:10.1126/science.1170261

    Article  CAS  PubMed  Google Scholar 

  • Xing GX, Zhu ZL (2002) Regional nitrogen budgets for China and its major watersheds. Biogeochemistry 57:405–427. doi:10.1023/A:1016508323200

    Article  Google Scholar 

  • Yan WJ, Zhang S, Sun P, Seitzinger SP (2003) How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate. Global Biogeochem Cycles 17(4):1091. doi:10.1029/2002GB002029

    Article  Google Scholar 

  • Yan WJ, Mayorga E, Li XY, Seitzinger SP, Bouwman AF (2010) Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures. Global Biogeochemical Cycles 24: GB0A06, doi: 10.1029/2009GB003575

  • Zhang J, Yan J, Zhang ZF (1995) Nationwide river chemistry trends in China—Huanghe and Changjiang. Ambio 24:275–279

    CAS  Google Scholar 

  • Zhang J, Zhang ZF, Liu SM, Wu Y, Xiong H, Chen HT (1999) Human impacts on the large world rivers: would the Changjiang (Yangtze River) be an illustration? Global Biogeochem Cycles 13:1099–1105. doi:10.1029/1999GB900044

    Article  CAS  Google Scholar 

  • Zhu ZL (2008) Research on soil nitrogen in China. Acta Pedol Sin 45:778–783 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was supported by “Exploratory Forefront Project for the Strategic Science Plan in IGSNRR, CAS” (2012QY001), “Research Program of State Key Laboratory of Lake Science and Environment”(NO. 2012SKL012) and “National Science Foundation of China” (20777073 and 21177126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijin Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, X., Yan, W. et al. Watershed nitrogen export model related to changing nitrogen balance and hydrology in the Changjiang River basin. Nutr Cycl Agroecosyst 98, 87–95 (2014). https://doi.org/10.1007/s10705-014-9598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-014-9598-9

Keywords

Navigation