Skip to main content

Advertisement

Log in

Low nitrogen use efficiency and high nitrate leaching in a highly fertilized Coffea arabicaInga densiflora agroforestry system: a 15N labeled fertilizer study

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

In intensive cultivation of coffee (Coffea arabica L.), large N fertilizer inputs are thought to increase nitrate (NO3 ) water contamination and greenhouse gas emissions. This study was carried out (1) to evaluate the nitrogen use efficiency of a highly fertilized C. arabicaInga densiflora agroforestry system on an Andosol and (2) to determine the control mechanisms of N fluxes and losses. Nitrogen pools and fluxes were monitored for one cropping season in a coffee plantation (density 4,722 plants ha−1, height 2.1 m), shaded by regularly pruned leguminous trees (density 278 trees ha−1; height 8 m), in the Central Valley of Costa Rica. The fate of N fertilizer (250 kg N ha−1 year−1) was traced by adding 15N-urea at 1.61 kg 15N ha−1. The labeled urea was rapidly nitrified or immobilized in soil organic matter with 20.8 % recovered in organic form at the end of the cropping season in the top 2 m of the soil. There was high net N mineralization and nitrification in the top soil (≈200 kg N ha−1 year−1 in 0–10 cm) and up to 257 kg NO3 –N ha−1 were found in the top 2 m of the soil. Only 25.2 % (63 kg N ha−1) of the applied fertilizer (15N recovery) was taken up by the two plant species (13.5 % in the coffee plants, 9.6 % in the shade trees and 2.1 % in the litter). Total N export in the coffee fruit harvest accounted for 110 kg N ha−1 but only 17.6 kg N ha−1 came from the applied fertilizer (7 % of 15N recovery). During this year of high coffee production, the coffee plant acquired most of its N from mineralized soil N rather than from N fertilizer. High fertilization resulted in a low rate of N2 fixation by I. densiflora, estimated at 22.7 kg N ha−1 year−1 (Ndfa of 16.1 %). As a result of high water drainage (1,745 mm for a total rainfall of 2,678 mm), the main fate of N fertilizer was NO3 leaching (33–55 % of 15N recovery). The annual NO3 –N leaching at a depth of 120 cm was 157.2 kg N ha−1 year−1(including 82.8 from applied N) and the N2O–N emission was 5.8 kg N ha−1 year−1. These results clearly showed that the system was N saturated, leading to low use efficiency of the N fertilizer and significant losses of N, principally through NO3 leaching. This study provided an insight on how to reduce the negative environmental impact of N fertilization in intensive coffee cultivation and increase N use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SC, Jose S, Nair PKR, Brecke BJ, Ramsey CL (2004) Competition for 15N-labeled fertilizer in a pecan (Carya illinoensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Plant Soil 263:151–164

    Article  CAS  Google Scholar 

  • Anderson JM, Ingram J (1993) Tropical soil biology and fertility. A handbook of methods. CAB International, Oxford, p 221

  • Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis Bueno, Jr F (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4(2–3):131–140

    Article  Google Scholar 

  • Babbar LI, Zak DR (1995) Nitrogen loss from coffee agroecosystems in Costa Rica - leaching and denitrification in the presence and absence of shade trees. J Environ Qual 24:227–233

    Google Scholar 

  • Barron AR, Purves DW, Hedin LO (2011) Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165:511–520

    Article  PubMed  Google Scholar 

  • Bergamo Fenilli TA, Reichardt K, Ocheuze T, Triveli, PCO, Favarin JL (2007) Volatilization of ammonia derived from fertilizer and its reabsorption by coffee plants. Commun Soil Sci Plant Anal 38:1741–1751

    Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the N-15 natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270

    Article  Google Scholar 

  • Brooks PD, Stark JM, McInteer BB, Preston T (1989) Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci Soc Am J 53:1701–1711

    Article  Google Scholar 

  • Bustamante C, Ochoa M, Rodriguez-Maritza I (1997) Balance of tree 15 N nitrogen fertilizers in a Cuban Oxisol cultivated for Coffea arabica L. Tropicultura 15:169–172

    Google Scholar 

  • Cannavo P, Sansoulet J, Harmand JM, Siles P, Dreyer E, Vaast P (2011) Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric Ecosyst Environ 140:1–13

    Article  Google Scholar 

  • Castro-Tanzi S, Dietsch T, Urena N, Vindas L, Chandler M (2012) Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazu, Costa Rica. Agric. Ecosyst, Environ 155:172–181

    Article  Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. J Trop Ecol 14:27–45

    Article  Google Scholar 

  • Crouzet G, Harmand JM, Joffre R, Siles P, Dambrine E (2007) Quantifying fine root biomass distribution of coffee and tree in a Coffea arabicaInga densiflora association using near infrared spectroscopy (NIRS). In: Proceedings of the second international symposium on multi-strata agroforestry systems with perennial crops: making ecosystem services count for farmers, consumers and the environment. 17–21 Sept 2007, Turrialba, Costa Rica

  • Domenach AM (1995) Approche de l’estimation de la fixation symbiotique des arbres par l’utilisation des abondances isotopiques naturelles de l’azote. In: Maillard P, Bonhomme R (eds) Utilisation des isotopes stables pour l’étude du fonctionnement des plantes, Paris 16–17 décembre 1993. Les Colloques 70, INRA Editions, Versailles, France, pp 159–172

  • FAO-ISRIC-IUSS Working Group WRB (2006) World reference base for soil resources 2006. In: World soil resources reports, No. 103, FAO, Rome

  • Fenilli TAB, Reichardt K, Favarin JL, Bacchi OOS, Silva AL, Timm LC (2008) Fertilizer N-15 balance in a coffee cropping system: a case study in Brazil. Revista Brasileira de Ciencia do Solo 32:1459–1469

    Article  CAS  Google Scholar 

  • Forsythe W (1985) Fısica de Suelos: Manual de Laboratorio. San Jose, Costa Rica, IICA

  • Fried M, Middelboe V (1977) Measurement of amount of nitrogen fixed by a legume crop. Plant Soil 47:713–715

    Article  CAS  Google Scholar 

  • Hagan DL, Jose S, Thetford M, Bohn K (2010) Partitioning of applied N-15 fertilizer in a longleaf pine and native woody ornamental intercropping system. Agrofor Syst 79:47–57

    Article  Google Scholar 

  • Haggar J, Barrios M, Bolaños M, Merlo M, Moraga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, Virginio EMF (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301

    Article  Google Scholar 

  • Halitligil M, Akin A, Ylbeyi A (2002) Nitrogen balance of nitrogen-15 applied as ammonium sulphate to irrigated potatoes in sandy textured soils. Biol Fertil Soils 35:369–378

    Article  CAS  Google Scholar 

  • Harmand JM, Avila H, Dambrine E, Skiba U, De Miguel S, Renderos Duran RV, Oliver R, Jimenez F, Beer J (2007a) Nitrogen dynamics and soil nitrate retention in a Coffea arabicaEucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochem 85:125–139

    Article  CAS  Google Scholar 

  • Harmand JM, Chaves V, Avila H, Cannavo P, Dionisio L, Crouzet G, Zeller B, Vaast P, Oliver R, Dambrine E (2007b) Nitrogen dynamics and nitrate leaching in Coffea arabica systems in Costa Rica. According to site conditions, fertilization and shade management. In: 21st international conference on coffee science, Montpellier, France, 11–15 Sept 2006. [Cd-Rom]. ASIC, Montpellier, p 1045–1052. Colloque Scientifique International sur le Café. 21, 2006-09-11/2006-09-15, Montpellier, France

  • Harmand JM, Avila H, Oliver R, Saint-André L, Dambrine E (2010) The impact of kaolinite and oxi-hydroxides on nitrate adsorption in deep layers of a Costarican Acrisol under coffee cultivation. Geoderma 158:216–224

    Article  CAS  Google Scholar 

  • Hergoualc’h K, Harmand JM, Cannavo P, Skiba U, Oliver R, Hénault C (2009) The utility of process-based models for simulating N2O emissions from soils: A case study based on Costa Rican coffee plantations. Soil Biol Biochem 41:2343–2355

    Article  Google Scholar 

  • Hergoualc’h K, Skiba U, Harmand JM, Henault C (2008) Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochem 89:329–345

    Article  Google Scholar 

  • Hergoualc’h K, Blanchart E, Skiba U, Henault C, Harmand JM (2012) Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric Ecosyst Environ 148:102–110

    Article  Google Scholar 

  • Henríquez C, Cabalceta G (1999) Guía práctica para el estudio introductoria de los suelos con un enfoque agrícola. Asociación Costarricense de la Ciencia del Suelo, p 111

  • Isaac ME, Harmand JM, Drevon JJ (2011) Growth and nitrogen acquisition strategies of Acacia Senegal seedlings under exponential phosphorus additions. J Plant Physiol 168:776–781

    Article  PubMed  CAS  Google Scholar 

  • Kolberg RL, Westfall DG, Peterson GA (1999) Influence of cropping intensity and nitrogen fertilizer rates on in situ nitrogen mineralization. Soil Sci Soc Am J 63:129–134

    Article  CAS  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Rox CL, Saur E, Roggy LC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666

    Article  Google Scholar 

  • Kurppa M, Leblanc HA, Nygren P (2010) Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15 N labelled soil: ecological and experimental considerations. Agrofor Syst 80:223–239

    Article  Google Scholar 

  • Lehmann J, Lilienfein J, Rebel K, Carmo Lima SD, Wilcke W (2004) Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use Manag 20:163–172

    Article  Google Scholar 

  • Mariotti A (1984) Natural 15N abundance measurements and atmospheric nitrogen standard calibration. Nature 311:251–252

    Article  CAS  Google Scholar 

  • Mata RA, Ramirez JE (1999) Estudio de caracterizacion de suelos y su relacion con el manejo delcultivo de café la provincia de Heredia. ICAFE, San José, Costa Rica, pp 92

  • Moguel P, Toledo V (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:1–12

    Article  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Moutonnet P, Pagenel JF, Fardeau JC (1993) Simultaneous field measurement of nitrate-nitrogen and matric pressure-head. Soil Sci Soc Am J 57:1458–1462

    Google Scholar 

  • Nannipieri P, Falchini L, Landi L, Benedetti A, Canali S, Tittarelli F, Ferri D, Convertini G, Badalucco L, Grego S, Vittori-Antisari L, Raglione M, Barraclough D (1999) Nitrogen uptake by crops, soil distribution and recovery of urea-N in a sorghum-wheat rotation in different soils under Mediterranean conditions. Plant Soil 208:43–56

    Article  CAS  Google Scholar 

  • Nygren P, Leblanc H (2009) Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agrofor Syst 76:303–315

    Article  Google Scholar 

  • Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48

    Article  PubMed  Google Scholar 

  • Nygren P, Fernández MP, Harmand JM, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94:123–160

    Article  Google Scholar 

  • Picado W, Ledezma R, Granados R (2009) Territorio de coyotes, agroecosistemas y cambio tecnológico en una región cafetalera de Costa Rica. Revista de Historia, 119–165, UNA-UCR 59-60

  • Pu G, Strong WM, Saffigna PG, Doughton J (2001) Denitrification, leaching and immobilisation of applied 15 N following legume and grass pastures in a semi-arid climate in Australia. Nutr. Cyc. Agroecosys. 59:199–207

    Article  Google Scholar 

  • Reynolds-Vargas JS, Richter DD (1995) Nitrate in groundwaters of the Central Valley, Costa Rica. Environ Intern 21:71–79

    Article  CAS  Google Scholar 

  • Rochette P, MacDonald JD, Angers DA, Chantigny MH, Gasser MO, Bertrand N (2009) Banding of urea increased ammonia volatilization in a dry acidic soil. J Environ Qual 38:1383–1390

    Article  PubMed  CAS  Google Scholar 

  • Rückauf U, Augustin J, Russow R, Merbach W (2004) Nitrate removal from drained and reflooded fen in soils affected by soil N transformation processes and plant uptake. Soil Biol Biochem 36:77–90

    Article  Google Scholar 

  • Ryan MC, Graham GR, Rudolph DL (2001) Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica. J Environ Qual 30:1848–1852

    Article  PubMed  CAS  Google Scholar 

  • Salas R, Bornemiza E, Zapata F, Chaves V, Rivera A (2002) Absorcion del fertilizante nitrogenado por la planta de café y su influencia sobre la contaminacion de las aguas subterraneas. In: Euned (ed) Manejo integrado de aguas subterraneas, pp 89–103

  • Shearer G, Kohl DH (1986) N2-fixation in field setting: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Siles P, Harmand JM, Vaast P (2010a) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78:269–286

    Article  Google Scholar 

  • Siles P, Vaast P, Dreyer E, Harmand JM (2010b) Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. J Hydrol 395:39–48

    Article  Google Scholar 

  • Simunek J, Van Genuchten MT, Sejna M (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat and multiple solutes in variable-saturated media. Version 3.0, HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside, California, p 270

  • Sorensen P, Jensen E (1991) Sequential diffusion of ammonium and nitrate from soil extracts to polytetrafluoroethylene trap for 15N determination. Anal Chim Acta 252:201–203

    Article  Google Scholar 

  • Summer ME, Miller WP (1996) Cation exchange capacity and exchange coefficient. In: Sparks DL (ed) Methods of soil analysis. SSSSA Book Series 5, Madison, WI, USA, pp 1205–1230

  • Tully KL, Lawrence D (2011) Closing the loop: nutrient balances in organic and conventional coffee agroforests. J Sustain Agric 35:671–695

    Article  Google Scholar 

  • Tully KL, Lawrence D, Scanlon TM (2012) More trees less loss: nitrogen leaching losses decrease with increasing biomass in coffee agroforests. Agric Ecosyst Environ 161:137–144

    Article  CAS  Google Scholar 

  • Vitousek PM, Matson PA (1988) Nitrogen transformations in a range of tropical forest soils. Soil Biol Biochem 20:361–367

    Article  CAS  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  PubMed  CAS  Google Scholar 

  • Zamora DZ, Jose S, Napolitano K (2009) Competition for 15N labeled nitrogen in a loblolly pine-cotton alley cropping system in the southeastern United States. Agric Ecosyst Environ 131:40–50

    Article  CAS  Google Scholar 

  • Zeller B, Colin-Belgrand M, Dambrine E, Martin F, Bottner P (2000) Decomposition of 15 N-labelled beech litter and fate of nitrogen derived from litter in a beech forest. Oecologia 123:550–559

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Fonseca from ICAFE (Instituto del café de Costa Rica) for giving permission to work on the study site, L. Dionisio (ICAFE) for assistance in collecting samples and P. Leandro from CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), S. Bienaimé and B. Pollier from INRA (Institut National de la Recherche Agronomique) for laboratory analyses. The European Commission (INCO project CASCA, ICA4-CT-2001-10071) partially funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cannavo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannavo, P., Harmand, JM., Zeller, B. et al. Low nitrogen use efficiency and high nitrate leaching in a highly fertilized Coffea arabicaInga densiflora agroforestry system: a 15N labeled fertilizer study. Nutr Cycl Agroecosyst 95, 377–394 (2013). https://doi.org/10.1007/s10705-013-9571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-013-9571-z

Keywords

Navigation