Skip to main content

Advertisement

Log in

Crop residue chemistry, decomposition rates, and CO2 evolution in Bt and non-Bt corn agroecosystems in North America: a review

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Corn (Zea mays L.) is a major cereal crop, with production on more than one-fifth of the agricultural land worldwide. In North America, about 50% of corn acreage is planted with transgenic corn hybrids such as those with the gene from Bacillus thuringiensis (Bt) that express the insecticidal crystalline protein (Cry1Ab) for the control of European corn borer (ECB, Ostrinia nubilalis Hubner). Widespread production of Bt corn could affect soil organic carbon (SOC) storage in agroecosystems if transgenic corn differs from conventional corn in yield and chemical composition. Generally, the yield of Bt corn is greater than non-Bt corn in years when there is severe infestation of corn insect pests. Some authors report that Bt corn has higher lignin content than non-Bt corn, whereas others found no difference in the chemical composition of near isolines. Residues with higher lignin content are expected to have a slower decomposition rate and release less CO2 to the atmosphere; however, this is not supported by the literature. A few studies have examined decomposition of Bt corn residues in this context, and the findings to date have been inconclusive, perhaps due to the variety of experimental approaches used to study this question. Generally, the literature supports the view that decomposition rates in Bt corn- and non-Bt corn-amended soils are similar. Whether Bt corn has greater lignin content or slower decomposition rates, the relevant question is whether this will affect the amount of C storage in the soil. A significant gain in SOC requires crop residue inputs with higher lignin content than what is realistically expected from Bt corn residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADF:

Acid detergent fiber

ADL:

Acid detergent lignin

Bt:

Bacillus thuringiensis

Cry protein:

Crystal-like protein

ECB:

European corn borer

IPCC:

Intergovernmental panel on climate change

NDF:

Neutral detergent fiber

NPP:

Net primary production

SOC:

Soil organic carbon

US-EPA:

US environmental protection agency

References

  • Amos B, Walters DT (2006) Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Sci Soc Am J 70:1489–1503

    Article  CAS  Google Scholar 

  • Bahri H, Rasse DP, Rumpel C, Dignac M-F, Bardoux G, Mariotti A (2008) Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biol Biochem 40:1916–1922

    Article  CAS  Google Scholar 

  • Baute T (ed) (2004) A grower’s handbook: controlling corn insect pests with Bt corn technology, 2nd edn. Canadian Corn Pest Coalition, Ridgetown, Ontario, p 24

    Google Scholar 

  • Bode WM, Calvin DD, Mason CE (1990) Yield-loss relationships and economic injury levels for European corn borer populations (Lepidoptera: Pyralidae) infecting Pennsylvania field corn. J Econ Entomol 83:1595–1603

    Google Scholar 

  • Bolinder MA, Angers DA, Giroux M, Laverdiere MR (1999) Estimating C inputs retained as soil organic matter from corn (Zea mays L.). Plant Soil 215:85–91

    Article  CAS  Google Scholar 

  • Buyanovsky GA, Wagner GH (1986) Post-harvest residue input to cropland. Plant Soil 93:57–65

    Article  Google Scholar 

  • Cadish G, Giller KE (eds) (1997) Driven by nature–plant litter quality and decomposition. CAB International, Wallingford

    Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition: mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    PubMed  CAS  Google Scholar 

  • Canadian Corn Pest Coalition (2007) Bt corn insect resistance management—compliance study 2007. Stratus Agri-Marketing Inc. http://www.cornpest.ca/documents/CDN2007CornComplianceStudy.pdf. Accessed 6 May 2009

  • Canadian Food Inspection Agency (1996) Decision document DD96-09: determination of environmental safety of event 176 Bt Corn (Zea mays L.) Developed by Ciba Seeds and Mycogen Corporation. http://www.inspection.gc.ca/english/plaveg/bio/dd/dd9609e.shtml. Accessed 19 April 2009

  • Canadian Food Inspection Agency (1997) Decision document 97-19: determination of the safety of Monsanto Canada Inc.’s Yieldgard™ Insect Resistant Corn (Zea mays L.) Line MON810. http://www.inspection.gc.ca/english/plaveg/bio/dd/dd9719e.shtml. Accessed 19 April 2009

  • Canadian Food Inspection Agency (2007) Decision document DD2007- 68 determination of the safety of Syngenta Seeds Inc.’s Corn (Zea mays L.) Event MIR604. http://www.inspection.gc.ca/english/plaveg/bio/dd/dd0768e.shtml. Accessed 19 April 2009

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  PubMed  CAS  Google Scholar 

  • Dillehay BL, Roth GW, Calvin DD, Kratochvil RJ, Kuldau GA, Hyde JA (2004) Performance of Bt corn hybrids, their near isolines, and leading corn hybrids in Pennsylvania and Maryland. Agron J 96:818–824

    Google Scholar 

  • Dinel H, Schnitzer M, Saharinen M, Meloche F, Pare T, Dumontet S, Lemee L, Ambles A (2003) Extractable soil lipids and microbial activity as affected by Bt and non Bt maize grown on a silty clay loam soil. J Environ Sci Health B 38:211–219

    Article  PubMed  CAS  Google Scholar 

  • Dow Agrosciences (2007) Herculex® RW Rootworm protection maize: technical bulletin. http://www.dowagro.com/PublishedLiterature/dh_00a4/0901b803800a4d0c.pdf?filepath=herculex/pdfs/noreg/010-16438.pdf&fromPage=GetDoc. Accessed 18 April 2009

  • Economic Research Service—United States Department of Agriculture (2008) Adoption of genetically engineered crops in the US: extent of adoption. http://www.ers.usda.gov/Data/BiotechCrops/adoption.htm. Accessed 4 April 2009

  • Fang M, Motavalli PP, Kremer RJ, Nelson KA (2007) Assessing changes in soil microbial communities and carbon mineralization in Bt and non-Bt corn residue-amended soils. Appl Soil Ecol 37:150–160

    Article  Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37:1073–1082

    Article  CAS  Google Scholar 

  • Folmer JD, Grant RJ, Milton CT, Beck J (2002) Utilization of Bt corn residue by grazing beef steers and Bt corn silage and grain by growing beef cattle and lactating dairy cows. J Anim Sci 80:1352–1361

    PubMed  CAS  Google Scholar 

  • Goering H, Van Soest P (1970) Forage fiber analysis. Agric. Handbook No. 379. ARS, USDA, Washington, DC

    Google Scholar 

  • Hagerman P (1997) European corn borer in field corn. Factsheet # 97-021, Ontario Ministry of Agriculture, Food, and Rural Affairs. http://www.omafra.gov.on.ca/english/crops/facts/97-021.htm. Accessed 19 June 2008

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford

    Google Scholar 

  • Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical overview. In: Cadish G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford

    Google Scholar 

  • Hopkins DW, Gregorich EG (2003) Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. Eur J Soil Sci 54:793–800

    Article  Google Scholar 

  • Hyde J, Martin MA, Preckel PV, Edwards CR (1999) The economics of Bt corn: valuing protection from the European corn borer. Rev Agric Econ 21:442–454

    Article  Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586

    Article  CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, (Eds). Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Johnson JM-F, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots, and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  • Johnson JM-F, Barbour NW, Weyers SL (2007) Chemical decomposition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162

    Article  CAS  Google Scholar 

  • Jones BJ (2003) Agronomic handbook: management of crops, soils, and their fertility. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Jung HG, Sheaffer CC (2004) Influence of Bt transgenes on cell wall lignification and digestibility of maize stover for silage. Crop Sci 44:1781–1789

    CAS  Google Scholar 

  • Lal R, Kimble J, Follett RF (1997) Pedospheric processes and the carbon cycle. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Latshaw WL, Miller EC (1924) Elemental composition of corn plants. J Agric Res 27:845–861

    CAS  Google Scholar 

  • Lehman RM, Osborne SL, Rosentrater KA (2008) No differences in decomposition rates observed between Bacillus thuringiensis and non-Bacillus thuringiensis corn residue incubated in the field. Agron J 100:163–168

    Article  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis, and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  PubMed  CAS  Google Scholar 

  • Ma BL, Subedi KD (2005) Development, yield, grain moisture, and nitrogen uptake of Bt corn hybrids and their conventional near-isolines. Field Crops Res 93:199–211

    Article  Google Scholar 

  • Ma BL, Meloche F, Wei L (2009) Agronomic assessment of Bt trait and seed or soil-applied insecticides on the control of corn rootworm and yield. Field Crops Res 111:189–196

    Article  Google Scholar 

  • Martin SA, Darrah LL, Hibbard BE (2004) Crop breeding, genetics, and cytology: divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn. Crop Sci 44:711–717

    Article  Google Scholar 

  • Masoero F, Moschini M, Rossi F, Prandini A, Pietri A (1999) Nutritive value, mycotoxin contamination and in vitro rumen fermentation of normal and genetically modified corn (Cry1A(B)) grown in Italy. Maydica 44:205–209

    Google Scholar 

  • Metcalf RL (1986) Forward. In: Krysan JL, Miller TA (eds) Methods for the study of pest Diabrotica. Springer-Verlag, New York

    Google Scholar 

  • Molina JAE, Clapp CE, Linden DR, Allmaras RR, Layese MF, Dowdy RH, Cheng HH (2001) Modeling the incorporation of corn (Zea mays L.) carbon from roots and rhizodeposition into soil organic matter. Soil Biol Biochem 33:83–92

    Article  CAS  Google Scholar 

  • Motavalli P, Nelson K, Mungai N (2004) Assessing changes in soil nitrogen and rates of decomposition due to differences between Bt and non Bt corn residues. Greenley Memorial Research Center, 2004 Field Day Report, University of Missouri—Columbia. http://aes.missouri.edu/greenley/fieldday/2004/page59.stm. Accessed 2 July 2008

  • Mungai NW, Motavalli PP, Nelson KA, Kremer RJ (2005) Differences in yields, residue composition and N mineralization dynamics of Bt and non-Bt maize. Nutr Cycl Agroecosyst 73:101–109

    Article  Google Scholar 

  • Ostlie K (2001) Crafting crop resistance to corn rootworms. Nat Biotechnol 19:624–625

    Article  PubMed  CAS  Google Scholar 

  • Otto A, Simpson MJ (2006) Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochem 80:121–142

    Article  CAS  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochem 48:147–163

    Article  CAS  Google Scholar 

  • Poerschmann J, Gathmann A, Augustin J, Langer U, Gorecki T (2005) Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize–characterization of lignin patterns. J Environ Qual 34:1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Prince SD, Haskett J, Steininger M, Strand H, Wright R (2001) Net primary production of US Midwest croplands from agricultural harvest yield data. Ecol Appl 11:1194–1205

    Article  Google Scholar 

  • Reay D, Pidwirny M (2006) Carbon dioxide. In: Cutler JC (ed) Encyclopedia of earth. http://www.eoearth.org/article/Carbon_dioxide. Accessed 19 June 2008

  • Rossi F, Moschini M, Fiorentini L, Masoero F, Piva G (2003) Analytical composition and rumen degradability of isogenic and transgenic corn varieties. J Sci Food Agric 83:1337–1341

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol Ecol 33:35–39

    Article  PubMed  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001a) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn had no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225–1230

    Article  CAS  Google Scholar 

  • Saxena D, Stotzky G (2001b) Bt corn has a higher lignin content than non-Bt corn. Amer J Bot 88:1704–1706

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 68:775–806

    Google Scholar 

  • Smith CG, Rodgers MW, Zimmerlin A, Ferdinando D, Bolwell GP (1994) Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French beans (Phaseolus vulgaris L.). Planta 192:155–164

    Article  CAS  Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    Article  CAS  Google Scholar 

  • Subedi KD, Ma BL (2007) Dry matter and nitrogen partitioning patterns in Bt and non-Bt near-isoline maize hybrids. Crop Sci 47:1186–1192

    Article  CAS  Google Scholar 

  • Tapp H, Stotzky G (1995) Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appl Environ Microbiol 61:1786–1790

    PubMed  CAS  Google Scholar 

  • Tapp H, Stotzky G (1998) Persistance of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol Biochem 30:471–476

    Article  CAS  Google Scholar 

  • Tarkalson DD, Kachman SD, Knops JMN, Thies JE, Wortmann CS (2008) Decomposition of Bt and non-Bt corn hybrid residues in the field. Nutr Cycl Agroecosyst 80:211–222

    Article  CAS  Google Scholar 

  • US-EPA (2001) Bt plant-pesticides biopesticides registration action document: preliminary risks and benefits sections—Bacillus thuringiensis plant-pesticides. US EPA Office of pesticide programs, biopesticides and pollution prevention division. http://www.epa.gov/oscpmont/sap/meetings/2000/october/brad3_enviroassessment.pdf. Accessed 6 May 2009

  • Willson HR, Eisley JB (2001) European corn borer. Extension fact sheet, Ohio State University Extension. http://ohioline.osu.edu/ent-fact/0015.html. Accessed 6 Feb 2008

  • Zibilske LM, Materon L (2005) Biochemical properties of decomposing cotton and corn stem and root residues. Soil Sci Soc Am J 69:375–386

    Article  Google Scholar 

  • Zwahlen C, Hilbeck A, Gugerli P, Netwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecol 12:765–775

    Article  CAS  Google Scholar 

  • Zwahlen C, Hilbeck A, Nentwig W (2007) Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant Soil 300:245–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Green Crop Network, funded by the Natural Sciences and Engineering Research Council of Canada, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Whalen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanni, S.F., Whalen, J.K. & Ma, B.L. Crop residue chemistry, decomposition rates, and CO2 evolution in Bt and non-Bt corn agroecosystems in North America: a review. Nutr Cycl Agroecosyst 87, 277–293 (2010). https://doi.org/10.1007/s10705-009-9338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9338-8

Keywords

Navigation