Skip to main content

Advertisement

Log in

Towards a Revised Coefficient for Estimating N2O Emissions from Legumes

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The Intergovernmental Panel on Climate Change (IPCC) standard methodology to conduct national inventories of soil N2O emissions is based on default (or Tier I) emission factors for various sources. The objective of our study was to summarize recent N2O flux data from agricultural legume crops to assess the emission factor associated with rhizobial nitrogen fixation. Average N2O emissions from legumes are 1.0 kg N ha−1 for annual crops, 1.8 kg N ha−1 for pure forage crops and 0.4 kg N ha−1 for grass legume mixes. These values are only slightly greater than background emissions from agricultural crops and are much lower that those predicted using 1996 IPCC methodology. These field flux measurements and other process-level studies offer little support for the use of an emission factor for biological N fixation (BNF) by legume crops equal to that for fertiliser N. We conclude that much of the increase in soil N2O emissions in legume crops may be attributable to the N release from root exudates during the growing season and from decomposition of crop residues after harvest, rather than from BNF per se. Consequently, we propose that the biological fixation process itself be removed from the IPCC N2O inventory methodology, and that N2O emissions induced by the growth of legume crops be estimated solely as a function of crop residue decomposition using an estimate of above- and below-ground residue inputs, modified as necessary to reflect recent findings on N allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Aoyama T. Nozawa (1993) ArticleTitleMicrobial biomass nitrogen and mineralization-Immobilization processes of nitrogen in soils incubated with various organic materials Soil Sci. Plant Nutr. 39 23–32 Occurrence Handle1:CAS:528:DyaK3sXksVynsLk%3D

    CAS  Google Scholar 

  • C. Arrese-Igor J.I. Garcia-Plazaola A. Hernandez P.M. Aparicio-Tejo (1990) ArticleTitleEffect of low nitrate supply to nodulated Lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolism Physiol. Plant 80 185–190 Occurrence Handle10.1034/j.1399-3054.1990.800204.x Occurrence Handle1:CAS:528:DyaK3cXmt1yjtr8%3D

    Article  CAS  Google Scholar 

  • E.M. Baggs R.M. Rees K.A. Smith A.J.A. Winten (2000) ArticleTitleNitrous oxide emission from soils after incorporating crop residues Soil Use Manage 16 82–87

    Google Scholar 

  • F. Bertelsen E.S. Jensen (1992) ArticleTitleGaseous nitrogen losses from field plots grown with pea (Pisum sativum L.) or spring barley (Hordeum vulgare L.) estimated by 15N mass balance and acethylene inhibition techniques Plant Soil 174 195–209

    Google Scholar 

  • P.M. Bonish K.W. Steele F.J. Neville (1991) ArticleTitleDenitrifying and symbiotic characteristics of lotus rhizobia from two New Zealand soils N. Z. J. Agric. Res. 34 221–226

    Google Scholar 

  • A.F. Bouwman (1996) ArticleTitleDirect emissions of nitrous oxide from agricultural soils Nutr. Cycl. Agroenviron. 46 53–70 Occurrence Handle1:CAS:528:DyaK2sXotlCiuw%3D%3D

    CAS  Google Scholar 

  • Bouwman A.F., Boumans L.J.M. and Batjes N.H. 2002a. Emissions of N2O and NO from fertilized fields: summary of available data. Global Biogeochem. Cycles 16: 1058doi:10.1029/2001GB001811. (Data available at:http://arch.rivm.nl/ieweb/ieweb/index.html?databases/n2o_no_emission_inv.html).

  • A.F. Bouwman L.J.M. Boumans N.H. Batjes (2002b) ArticleTitleModeling global annual N2O and NO Emissions from fertilized fields. Global Biogeochem Cycles 16 1080

    Google Scholar 

  • J.M. Bremner S.G. Robbins A.M. Blackmer (1980) ArticleTitleSeasonal variability in emission of nitrous oxide from soil Geophys. Res. Lett. 7 641–644 Occurrence Handle1:CAS:528:DyaL3cXlvVCrur8%3D

    CAS  Google Scholar 

  • B.A. Bryan G. Shearer J.L. Skeeters D.H. Kohl (1985) ArticleTitleDenitrification by intact soybean nodules in relation to natural 15N enrichment of nodules Can. J. Soil Sci. 65 261–265 Occurrence Handle1:CAS:528:DyaL2MXksFWhtb0%3D Occurrence Handle10.4141/cjss85-030

    Article  CAS  Google Scholar 

  • G.A. Breitenbeck J.M. Bremner (1989) ArticleTitleAbility of free-living Bradyrhizobium japonicum to denitrify nitrate in soils Biol. Fertil. Soils 7 219–224 Occurrence Handle10.1007/BF00709652

    Article  Google Scholar 

  • G.X. Chen M.L. Cabrera L. Zhang J. Wu Y. Shi W.T. Yu S.M. Shen (2002) ArticleTitleNitrous oxide emissions from upland crop–soil systems in north eastern China Nutr. Cycl. Agroenviron. 62 241–247 Occurrence Handle1:CAS:528:DC%2BD38XovFShtrw%3D

    CAS  Google Scholar 

  • G.X. Chen B. Huang H. Xu Y. Zhang G.H. Huang K.W. Yu A.X. Hou R. Du S.J. Han O. vanCleemput (2000) ArticleTitleNitrous oxide emissions from terrestrial ecosystems in China Chemosphere Global Change Sci. 2 373–378 Occurrence Handle10.1016/S1465-9972(00)00036-2 Occurrence Handle1:CAS:528:DC%2BD3cXos1egs7Y%3D

    Article  CAS  Google Scholar 

  • R. Conrad W. Seiler G. Bunse (1983) ArticleTitleFactors influencing the loss of fertilizer nitrogen in the atmosphere as N2O J. Geophys. Res. 88 6709–6718 Occurrence Handle1:CAS:528:DyaL3sXlsVGhurk%3D Occurrence Handle10.1029/JC088iC11p06709

    Article  CAS  Google Scholar 

  • M.D. Corre C. Kessel Particlevan D.J. Pennock (1996) ArticleTitleLandscape and seasonal patterns of nitrous oxide emissions in a semiarid region Soil Sci. Soc. Am. J. 60 1806–1815 Occurrence Handle1:CAS:528:DyaK2sXjsVCitg%3D%3D Occurrence Handle10.2136/sssaj1996.03615995006000060028x

    Article  CAS  Google Scholar 

  • J.M. Duxbury D.R. Bouldin R.E. Terry R.L. Tate (1982) ArticleTitleEmissions of nitrous oxide from soils Nature 298 462–464 Occurrence Handle10.1038/298462a0 Occurrence Handle1:CAS:528:DyaL38Xls1Wlt7c%3D

    Article  CAS  Google Scholar 

  • J.N. Galloway J.D. Aber J.W. Erisman S.P. Seitzinger R.W. Howarth E.B. Cowling B.J. Cosby (2003) ArticleTitleThe nitrogen cascade BioScience 53 341–356

    Google Scholar 

  • J.I. Garcia-Plazaola J.M. Becerril C. Arrese-Igor A. Hernandez C. Gonzalez-Murua P.M. Aparicio-Tejo (1993a) ArticleTitleDenitrifying ability of thirteen Rhizobium meliloti strains Plant Soil 149 43–50 Occurrence Handle1:CAS:528:DyaK3sXktVCksbg%3D

    CAS  Google Scholar 

  • J.I. Garcia-Plazaola J.M. Becerril C. Arrese-Igor A. Hernandez C. Gonzalez-Murua P.M. Aparicio-Tejo (1993b) ArticleTitleThe contribution of Rhizobium meliloti to soil denitrification Plant Soil 157 207–213 Occurrence Handle10.1007/BF00011049 Occurrence Handle1:CAS:528:DyaK2cXitFGqt7k%3D

    Article  CAS  Google Scholar 

  • J. I. García-Plazaola C. Arrese-Igor A. González P.M. Aparicio-Tejo J.M. Becerril (1996) ArticleTitleDenitrification in lucerne nodules is not involved in nitrite detoxification Plant Soil 182 149–155

    Google Scholar 

  • J.L. Gil W.H. Fick (2001) ArticleTitleSoil nitrogen mineralization in mixtures of eastern gamagrass with alfalfa and red clover Agron. J. 93 902–910 Occurrence Handle10.2134/agronj2001.934902x

    Article  Google Scholar 

  • Gregorich E.G., Rochette P., vandenBygaart A.J. and Angers D.A. 2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil. Till. Res. (in press).

  • S. Ghosh D. Majumdar M.C. Jain (2002) ArticleTitleNitrous oxide emissions from kharif and rabi legumes grown on an alluvial soil Biol. Fertil. Soils 35 473–478 Occurrence Handle10.1007/s00374-002-0498-9 Occurrence Handle1:CAS:528:DC%2BD38XlsFSrtbg%3D

    Article  CAS  Google Scholar 

  • Helgason B.L., Chantigny M.H., Drury C., Ellert B.H., Gregorich E.G., Janzen H.H., Lemke R.L., Pattey E., Rochette P. and Wagner-Riddle C. 2005. Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosytems. Nutr. Cycl., Agroenviron. (in press).

  • S.A. Hossain R.C. Dalal S.A. Waring W.M. Strong E.J. Weston (1996a) ArticleTitleComparison of legume-based cropping systems at WarraQueensland. I. Soil nitrogen and organic carbon accretion and potentially mineralisable nitrogen Aust. J. Soil Res. 34 273–287 Occurrence Handle1:CAS:528:DyaK28XisV2is78%3D

    CAS  Google Scholar 

  • S.A. Hossain W.M. Strong S.A. Waring R.C. Dalal E.J. Weston (1996b) ArticleTitleComparison of legume-based cropping systems at WarraQueensland. II. Mineral nitrogen accumulation and availability to the subsequent wheat crop Aust. J. Soil Res. 34 289–297 Occurrence Handle1:CAS:528:DyaK28XisV2is7w%3D

    CAS  Google Scholar 

  • Y. Huang J. Zou X. Zheng Y. Wang X. Xu (2004) ArticleTitleNitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios Soil Biol. Biochem. 36 973–981 Occurrence Handle10.1016/j.soilbio.2004.02.009 Occurrence Handle1:CAS:528:DC%2BD2cXktVemtro%3D

    Article  CAS  Google Scholar 

  • IPCC 1997. Greenhouse gas reference manual: revised 1996 IPCC guidelines for national greenhouse gas inventories. Reference Volume 3. J.T. Houghton, L.G. Meira FilhoB. Lin, K. Tréanton, . Mamaty, Y,. Bonduky, D.J. Briggs and B.A. Callander(eds).http://www.ipcc-nggip.iges.or.jp/public/gl/invs6c.htm.

  • P.A. Jacinthe W.A. Dick (1997) ArticleTitleSoil Management and nitrous oxide emissions from cultivated fields in southern Ohio Soil Till. Res. 41 221–235 Occurrence Handle10.1016/S0167-1987(96)01094-X

    Article  Google Scholar 

  • H.H. Janzen K.A. Beauchemin Y. Bruinsma C.A. Campbell R.L. Desjardins B.H. Ellert E.G. Smith (2003) ArticleTitleThe fate of nitrogen in agroecosystems: An illustration using Canadian estimates Nutr. Cycling Aroecosyst. 67 85–102 Occurrence Handle1:CAS:528:DC%2BD3sXmt1emsb4%3D

    CAS  Google Scholar 

  • D.A. Jenkinson (2001) ArticleTitleThe impact of humans on the nitrogen cyclewith focus on temperate arable agriculture Plant Soil 228 3–15 Occurrence Handle10.1023/A:1004870606003 Occurrence Handle1:CAS:528:DC%2BD3MXhtlWktbc%3D

    Article  CAS  Google Scholar 

  • E.-A. Kaiser K. Kohrs M. Kucke E. Schnug J.C. Munch O. Heinemeyer (1998) ArticleTitleNitrous oxide release from arable soil: importance of perennial forage crops Biol. Fertil. Soils 28 36–43 Occurrence Handle10.1007/s003740050460 Occurrence Handle1:CAS:528:DyaK1cXntFyrtLg%3D

    Article  CAS  Google Scholar 

  • C. Kammann L. Grunhage C. Muller S. Jacobi H.J. Jager (1998) ArticleTitleSeasonal variability and mitigation options for N2O emissions from differently managed grasslands Environ. Pollut. 1 IssueID102 179–186

    Google Scholar 

  • D.J. Kelner J.K. Vessey M.H. Entz (1997) ArticleTitleThe nitrogen dynamics of 1-, 2- and 3-year stands of alfalfa in a cropping system Agric. Ecosyst. Environ. 64 1–10 Occurrence Handle1:CAS:528:DyaK2sXjslKnsrc%3D

    CAS  Google Scholar 

  • W.D.F. Khan M.B. Peoples D.F. Herridge (2002a) ArticleTitleQuantifying below-ground nitrogen of legumes. 1. Optimizing procedures for 15N shoot-labelling Plant Soil 245 327–334 Occurrence Handle10.1023/A:1020407006212 Occurrence Handle1:CAS:528:DC%2BD38XnsVGlsbk%3D

    Article  CAS  Google Scholar 

  • D.F. Khan M.B. Peoples P.M. Chalk D.F. Herridge (2002b) ArticleTitleQuantifying below-ground nitrogen of legumes. 2. A comparison of 15N and non isotopic methods Plant Soil 239 277–289 Occurrence Handle10.1023/A:1015066323050 Occurrence Handle1:CAS:528:DC%2BD38XktFWitrw%3D

    Article  CAS  Google Scholar 

  • S. Kilian D. Werner (1996) ArticleTitleEnhanced denitrification in plots of N2-fixing faba beans compared to plots of a non-fixing legume and non-legumes Biol. Fertil. Soils 21 77–83 Occurrence Handle10.1007/BF00335996

    Article  Google Scholar 

  • L. Larsson M. Fern Å. Kasimir-Klemedtsson L. Klemedtsson (1998) ArticleTitleAmmonia and nitrous oxide emissions from grass and alfalfa mulches Nutr. Cycl. Agroecosyst. 51 41–46 Occurrence Handle10.1023/A:1009799126377 Occurrence Handle1:CAS:528:DyaK1cXis1akurg%3D

    Article  CAS  Google Scholar 

  • Lemke R.L., Goddard T.G. and Selles F. 2003. Quantifying nitrous oxide emissions resulting from the production of leguminous crops in western Canada. Final report submitted to Environment Canada, Ottawa, 27p.

  • R. Lucinski W. Polcyn L. Ratajczak (2002) ArticleTitleNitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes Acta Biochem. Polon. 49 537–546 Occurrence Handle1:CAS:528:DC%2BD38XlsFCru7c%3D

    CAS  Google Scholar 

  • A.F. MacKenzie M.X. Fan F. Cadrin (1998) ArticleTitleNitrous oxide emission in three years as affected by tillagecorn-soybean-alfalfa rotations, and nitrogen fertilization J. Environ. Qual. 27 698–703 Occurrence Handle1:CAS:528:DyaK1cXjtlWitbc%3D Occurrence Handle10.2134/jeq1998.00472425002700030029x

    Article  CAS  Google Scholar 

  • J. Mayer F. Buegger E.S. Jensen M. Schloter J. Heß (2003) ArticleTitleEstimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method Soil Biol. Biochem. 35 21–28 Occurrence Handle10.1016/S0038-0717(02)00212-2 Occurrence Handle1:CAS:528:DC%2BD3sXhvFGrtL0%3D

    Article  CAS  Google Scholar 

  • J. Mayer F. Buegger E.S. Jensen M. Schloter J. Heß (2004) ArticleTitleTurnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues Biol. Fertil. Soils 39 153–164 Occurrence Handle10.1007/s00374-003-0694-2 Occurrence Handle1:CAS:528:DC%2BD2cXhtlShtLg%3D

    Article  CAS  Google Scholar 

  • A.M. McNeill C. Zhu I.R.P. Fillery (1997) ArticleTitleUse of in situ 15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil–plant systems Aust. J. Agric. Res. 48 295–304

    Google Scholar 

  • Millar N., Ndufa J.K., Cadisch G. and Baggs E.M. 2004. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochem. Cycles 18.GB1032, doi:10.1029/2003GB002114.

  • T.H. Misselbrook D.R. Chadwick B.F. Pain D.M. Headon (1998) ArticleTitleDietary manipulation as a means of decreasing N losses and methane emissions and improving herbage uptake following application of pig slurry to grassland J. Agric. Sci. 130 183–191 Occurrence Handle10.1017/S0021859697005194

    Article  Google Scholar 

  • D.N. Munns (1977) Mineral nutrition and the legume symbiosis R.W.F. Hardy A.H. Gibson (Eds) A treatise on dinitrogen fixation. Section IV, Agronomy and ecology Wiley New York 353–392

    Google Scholar 

  • G.W. O’Hara R.M. Daniel K.W. Steele P.M. Bonish (1984) ArticleTitleNitrogen losses from soils caused by Rhizobium-dependent denitrification Soil Biol. Biochem. 16 429–431 Occurrence Handle1:CAS:528:DyaL2cXlvFSnsrY%3D

    CAS  Google Scholar 

  • G.W. O’Hara R.M. Daniel (1985) ArticleTitleRhizobial denitrification: a review Soil Biol. Biochem. 17 1–9 Occurrence Handle1:CAS:528:DyaL2MXktVehtL4%3D

    CAS  Google Scholar 

  • G. Pu P.G. Saffigna W.M. Strong (1999) ArticleTitlePotential for denitrification in cereal soils of northern Australia after legume or grass-legume pastures Soil Biol. Biochem. 31 667–675 Occurrence Handle10.1016/S0038-0717(98)00154-0 Occurrence Handle1:CAS:528:DyaK1MXjs1Citr4%3D

    Article  CAS  Google Scholar 

  • G. Pu W.M. Strong P.G. Saffigna J. Doughton (2001) ArticleTitleDenitrification , leaching, and immobilisation of applied 15N following legume and grass pastures in a semi-arid climate in Australia Nut. Cycling Agroecosyst. 59 199–207

    Google Scholar 

  • D.P. Rasse A.J.M. Smucker O. Schabenberger (1999) ArticleTitleModifications of soil nitrogen pools in response to alfalfa roots systems and shoot mulch Agron. J. 91 471–477 Occurrence Handle10.2134/agronj1999.00021962009100030019x

    Article  Google Scholar 

  • G.P. Robertson E.A. Paul R.R. Harwood (2000) ArticleTitleGreenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere Science 289 1922–1925 Occurrence Handle10.1126/science.289.5486.1922 Occurrence Handle1:CAS:528:DC%2BD3cXms1als78%3D

    Article  CAS  Google Scholar 

  • P. Rochette D.A. Angers G. Bélanger M.H. Chantigny D. Prévost G. Lévesque (2004) ArticleTitleEmissions of N2O from alfalfa and soybeans crops in Eastern Canada Soil Sci. Soc. Am. J. 68 493–506 Occurrence Handle1:CAS:528:DC%2BD2cXitV2ntL4%3D

    CAS  Google Scholar 

  • A. Rosen P.-E. Lindgren H. Ljunggren (1996) ArticleTitleDenitrification by Rhizobium meliloti. 1. Studies of free-living cells and nodulated plants Swed. J. Agric. Res. 26 105–113 Occurrence Handle1:CAS:528:DyaK2sXhsFChtb4%3D

    CAS  Google Scholar 

  • M. Šimek D. Elhottová F. Klimeš D.W. Hopkins (2004) ArticleTitleEmissions of N2O and CO2denitrification measurements and soil properties in red clover and rye grass stands Soil Biol. Biochem. 36 9–21

    Google Scholar 

  • V. Smil (2002a) ArticleTitleNitrogen and food production: proteins for human diets Ambio 31 126–131

    Google Scholar 

  • V. Smil (2002b) The earth’s biosphere The MIT Press Cambridge 346

    Google Scholar 

  • G.B. Smith M.S. Smith (1986) ArticleTitleSymbiotic and free-living denitrification by Bradyrhizobium japonicum Soil Sci. Soc. Am. J. 50 349–354 Occurrence Handle1:CAS:528:DyaL28XitVelurY%3D

    CAS  Google Scholar 

  • T.C. Ta F.D.H. MacDowall M.A. Faris (1986) ArticleTitleExcretion of nitrogen assimilated from N2 fixed by nodulated roots of alfalfa (Medicago sativa) Can. J. Bot. 64 2063–2067 Occurrence Handle1:CAS:528:DyaL28XlvVOks7g%3D Occurrence Handle10.1139/b86-270

    Article  CAS  Google Scholar 

  • Thyme M. and Ambus P. 2004. N2O emission from grass-clover swards is largely unaffected by recently fixed N2. DARCOFeNews No.1,(http://www.darcof.dk/enews/april04/ emision.html).

  • P. Berkum Particlevan H.H. Keyser (1985) ArticleTitleAnaerobic growth and denitrification among different serogroups of soybean rhizobia Appl. Environ. Microbiol. 49 772–777

    Google Scholar 

  • T.J. Weerden Particleder R.R. Sherlock P.H. Williams K.C. Cameron (1999) ArticleTitleNitrous oxide emissions and methane oxidation by soil following cultivation of two different leguminous pastures Biol. Fertil. Soils 30 52–60

    Google Scholar 

  • E. Veldkamp M. Keller M. Nuñez (1998) ArticleTitleEffects of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica Global Biogeochem. Cycles 12 71–79 Occurrence Handle10.1029/97GB02730 Occurrence Handle1:CAS:528:DyaK1cXhs1Cms7w%3D

    Article  CAS  Google Scholar 

  • G.L. Velthof M.L. Beusichem Particlevan O. Oenema (1998) ArticleTitleMitigation of nitrous oxide emissions from dairy farming systems Environ. Pollut. 102 173–178 Occurrence Handle10.1016/S0269-7491(98)80030-4 Occurrence Handle1:CAS:528:DyaK1MXjvVejtQ%3D%3D

    Article  CAS  Google Scholar 

  • G.L. Velthof O. Oenema (1997) ArticleTitleNitrous oxide emission from dairy farming systems in the Netherlands Neth. J. Agric. Sci.45 347–360

    Google Scholar 

  • F.P. Vinther E.S. Jensen (2000) ArticleTitleEstimating legume N2 fixation in grass-clover mixtures of a grazed organic cropping system using two 15N methods Agric. Ecosyst. Environ. 78 139–147 Occurrence Handle1:CAS:528:DC%2BD3cXhtFaju7w%3D

    CAS  Google Scholar 

  • C. Wagner-Riddle G.W. Thurtell G.K. Kidd E.G. Beauchamp R. Sweetman (1997) ArticleTitleEstimates of nitrous oxide emissions from agricultural fields over 28 months Can. J. Soil Sci. 77 135–144 Occurrence Handle1:CAS:528:DyaK2sXks1SgtL4%3D

    CAS  Google Scholar 

  • F.L. Walley G.O. Tomm A. Matus A.E. Slinkard C. van Kessel (1996) ArticleTitleAllocation and cycling of nitrogen in an alfalfa-bromegrass sward Agron. J. 88 834–843 Occurrence Handle10.2134/agronj1996.00021962008800050025x

    Article  Google Scholar 

  • Y.-P. Wang C.P. Meyer I.E. Galbally C.J. Smith (1997) ArticleTitleComparisons of field measurements of carbon dioxide and nitrous oxide fluxes with model simulations for a legume pasture in southern Australia J. Geophys. Res. 102 28013–28024 Occurrence Handle1:CAS:528:DyaK1cXltVWrsA%3D%3D

    CAS  Google Scholar 

  • S.C. Whalen R.L. Phillips E.N. Fisher (2000) ArticleTitleNitrous oxide emission from an agricultural field fertilized with liquid lagoonal swine effluent Global Biogeochem. Cycl. 14 545–558 Occurrence Handle1:CAS:528:DC%2BD3cXktFagsL8%3D

    CAS  Google Scholar 

  • R. Wheatley K. Ritz B. Griffiths (1990) ArticleTitleMicrobial biomass and mineral N transformations in soil planted with barley, ryegrass or turnip Plant Soil 127 157–167 Occurrence Handle10.1007/BF00014422

    Article  Google Scholar 

  • D.L. Williams P. Ineson P.A. Coward (1999) ArticleTitleTemporal variations in nitrous oxide fluxes from urine-affected grassland Soil Biol. Biochem. 31 779–788 Occurrence Handle10.1016/S0038-0717(98)00186-2 Occurrence Handle1:CAS:528:DyaK1MXjs1Cit78%3D

    Article  CAS  Google Scholar 

  • L. Yang Z. Cai (2005) ArticleTitleThe effect of growing soybean (Glycine max L.) on N2O emission from soil Soil Biol. Biochem. 37 1205–1209 Occurrence Handle1:CAS:528:DC%2BD2MXisFGrurc%3D

    CAS  Google Scholar 

  • X.M. Yang C.F. Drury W.D. Reynolds D.J. McKenney C.S. Tan T.Q. Zhang R.J. Fleming (2002) ArticleTitleInfluence of composts and liquid pig manure on CO2N2O emissions from a clay loam soil Can. J. Soil Sci. 82 395–401

    Google Scholar 

  • Z. Zhong R.L. Lemke L.M. Nelson (2004) Quantifying the N2O emissions associated with N2 fixation by pulse crops Agriculture and Agri-Food Canada Ottawa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Rochette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochette, P., Janzen, H.H. Towards a Revised Coefficient for Estimating N2O Emissions from Legumes. Nutr Cycl Agroecosyst 73, 171–179 (2005). https://doi.org/10.1007/s10705-005-0357-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-005-0357-9

Keywords

Navigation