Skip to main content
Log in

Influence of impurities on the resistance to spall fracture of aluminum near the melting temperature

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper presents the results of comparative experiments with commercial aluminum AD1 and aluminum A999 of high purity which were designated for measurements of spall strength of these materials at room temperature and at \(640\,^{\circ }\hbox {C}\). The measurements confirmed a sharp drop of the spall strength of commercial aluminum when approaching the melting temperature, which probably is associated with an earlier beginning of melting on the grain boundaries with higher concentration of impurities. The pure aluminum A999 maintains high spall strength near the melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antoun T, Seaman L, Curran DR, Kanel GI, Razorenov SV, Utkin AV (2003) Spall fracture. Springer, New York. doi:10.1007/b97226

    Google Scholar 

  • Barker LM, Hollenbach RE (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43(11):4669–4675. doi:10.1063/1.1660986

    Article  Google Scholar 

  • Bogach AA, Kanel GI, Razorenov SV, Utkin AV, Protasova SG, Sursaeva VG (1998) Resistance of zinc crystals to shock deformation and fracture at elevated temperatures. Phys Solid State 40:1676–1680. doi:10.1134/1.1130633

    Article  Google Scholar 

  • Dash JD (1999) History of the search for continuous melting. Rev Mod Phys 71(5):1737–1743. doi:10.1103/RevModPhys.71.1737

    Article  Google Scholar 

  • Guinan MW, Steinberg DJ (1974) Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J Phys Chem Solids 35:1501–1512. doi:10.1016/S0022-3697(74)80278-7

  • Han LB, An Q, Luo SN, German TC (2009) The effects of defects on melting of copper. In: Elert ML, Buttler WT (eds) Shock compression of condensed matter-2009. American Institute of Physics, New York, pp 1187–1190

    Google Scholar 

  • Hsieh TE, Balluffi RW (1989) Experimental-study of grain-boundary melting in aluminium. Acta Metall 37(6):1637–1644. doi:10.1016/0001-6160(89)90130-2

    Article  Google Scholar 

  • Kanel GI (1999) Dynamic strength of materials. Fatigue Fract Eng Mater Struct 22(11):1011–1019. doi:10.1046/j.1460-2695.1999.00246.x

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Bogatch AA, Utkin AV, Fortov VE, Grady DE (1996) Spall fracture properties of aluminum and magnesium at high temperatures. J Appl Phys 79:8310–8317. doi:10.1063/1.362542

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Baumung K, Singer J (2001) Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J Appl Phys 90:136–143. doi:10.1063/1.1374478

    Article  Google Scholar 

  • Kanel GI, Razorenov SV, Fortov VE (2004) Shock-wave compression and tension of solids at elevated temperatures: superheated crystal states, pre-melting, and anomalous growth of the yield strength. J Phys Condens Matter 16(14):S1007–S1016. doi:10.1088/0953-8984/16/14/010

    Article  Google Scholar 

  • Kanel GI, Savinykh AS, Garkushin GV, Razorenov SV (2015) Dynamic strength of tin and lead melts. JETP Lett 102:548–551. doi:10.1134/S0021364015200059

    Article  Google Scholar 

  • Luo J, Gupta VK, Yoon DH, Meyer HM III (2005) Segregation-induced grain boundary premelting in nickel-doped tungsten. Appl Phys Lett 87:231902. doi:10.1063/1.2138796

    Article  Google Scholar 

  • Razorenov SV, Kanel GI, Fortov VE (2003) Submicrosecond strength of aluminum and an aluminum-magnesium alloy AMg6M at normal and enhanced temperatures. Phys Met Metallogr 95(1):86–91

    Google Scholar 

  • Tallon JL, Wolfeden A (1979) Temperature dependence of the elastic constants of aluminum. J Phys Chem Solids 40:831–837. doi:10.1016/0022-3697(79)90037-4

    Article  Google Scholar 

  • Ubbelohde AR (1965) Melting and crystal structure. Clarendon Press, Oxford. doi:10.1002/ange.19660782223

    Google Scholar 

  • Zaretsky EB, Kanel GI (2011) Plastic flow in shock-loaded silver at strain rates from \(10^{4} \text{ s }^{-1}\) to \(10^{7} \text{ s }^{-1}\) and temperatures from 296 K to 1233 K. J Appl Phys 110:073502. doi:10.1063/1.3642989

    Article  Google Scholar 

  • Zaretsky EB, Kanel GI (2012a) Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression. J Appl Phys 112:073504. doi:10.1063/1.4755792

    Article  Google Scholar 

  • Zaretsky EB, Kanel GI (2012b) Impact response and dynamic strength of partially melted aluminum alloy. J Appl Phys 112:053511. doi:10.1063/1.4749763

    Article  Google Scholar 

  • Zaretsky EB, Kanel GI (2013) Response of copper to shock-wave loading at temperatures up to the melting point. J Appl Phys 114:083511. doi:10.1063/1.4819328

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Russian Science Foundation via Grant No. 14-12-01127 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Garkushin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkushin, G.V., Kanel, G.I., Savinykh, A.S. et al. Influence of impurities on the resistance to spall fracture of aluminum near the melting temperature. Int J Fract 197, 185–188 (2016). https://doi.org/10.1007/s10704-016-0074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0074-1

Keywords

Navigation