Skip to main content
Log in

Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Indium tin oxide (ITO) has been widely used as the electrode material in touch-screen displays and solar cells attributing to its combined high electrical conductivity and optical transparency. Moving forward from wafer based electronics to flexible/stretchable electronics, brittle electronic materials like ITO are significantly hindering the deformability of the integrated systems. To minimize strains in inorganic materials when subjected to stretch, thin metallic and ceramic films can be patterned into serpentine shapes. Although metallic serpentines have received extensive studies, experimental investigations on ceramic serpentines have not been reported. We perform uniaxial tension tests on Kapton-supported ITO serpentine thin films with in situ electrical resistance measurements. It is found that the narrower serpentine ribbons are more stretchable than their wider counterparts. We propose a generic empirical equation to predict the stretchability using three dimensionless geometric parameters. Conclusions reached for Kapton-supported ITO serpentine films are generally applicable to gold, silicon, and other stiff serpentine films bonded to stiff polymer substrates such as Kapton and polyethylene terephthalate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Betz U, Olsson MK, Marthy J, Escola MF, Atamny F (2006) Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol 200:5751–5759. doi:10.1016/j.surfcoat.2005.08.144

    Article  Google Scholar 

  • Gray DS, Tien J, Chen CS (2004) High-conductivity elastomeric electronics. Adv Mater 16:393–397. doi:10.1002/adma.200306107

    Article  Google Scholar 

  • Hsu YY, Gonzalez M, Bossuyt F, Axisa F, Vanfleteren J, De Wolf I (2009) In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect. J Mater Res 24:3573–3582. doi:10.1557/Jmr.2009.0447

    Article  Google Scholar 

  • Hsu YY, Gonzalez M, Bossuyt F, Vanfleteren J, De Wolf I (2011) Polyimide-enhanced stretchable interconnects: design fabrication, and characterization. IEEE Trans Electron Dev 58:2680–2688. doi:10.1109/Ted.2011.2147789

    Article  Google Scholar 

  • Huang X, Yeo WH, Liu YH, Rogers JA (2012) Epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases 7:1–9. doi:10.1007/S13758-012-0052-8

    Article  Google Scholar 

  • Khang DY, Jiang HQ, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212. doi:10.1126/science.1121401

    Article  Google Scholar 

  • Kim DH et al (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA 105:18675–18680. doi:10.1073/pnas.0807476105

    Article  Google Scholar 

  • Kim DH, Ghaffari R, Lu NS, Rogers JA (2012) Flexible and stretchable electronics for bio-integrated devices. Ann Rev Biomed Eng 14:113–128

    Article  Google Scholar 

  • Kim DH et al (2011a) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10:316–323. doi:10.1038/Nmat2971

    Article  Google Scholar 

  • Kim DH et al (2011b) Epidermal electronics. Science 333:838–843. doi:10.1126/science.1206157

    Article  Google Scholar 

  • Kim RH et al (2011c) Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett 11:3881–3886. doi:10.1021/Nl202000u

    Article  Google Scholar 

  • Leterrier Y et al (2004) Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 460:156–166. doi:10.1016/j.tsf.2004.01.052

    Article  Google Scholar 

  • Li T, Suo ZG, Lacour SP, Wagner S (2005) Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J Mater Res 20:3274–3277. doi:10.1557/Jmr.2005.0422

    Article  Google Scholar 

  • Lu NS, Wang X, Suo Z, Vlassak J (2007) Metal films on polymer substrates stretched beyond 50%. Appl Phys Lett 91:221909. doi:10.1063/1.2817234

    Article  Google Scholar 

  • Lu NS, Suo ZG, Vlassak JJ (2010) The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater 58:1679–1687. doi:10.1016/j.actamat.2009.11.010

    Article  Google Scholar 

  • Niu RM, Liu G, Wang C, Zhang G, Ding XD, Sun J (2007) Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl Phys Lett 90. doi:10.1063/1.2722684

  • Peng C, Jia Z, Bianculli D, Li T, Lou J (2011) In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates. J Appl Phys 109:1035. doi:10.1063/1.3592341

    Google Scholar 

  • Peng C, Jia Z, Henry N, Teng L, Jun L (2012) In situ electro-mechanical experiments and mechanics modeling of fracture in indium tin oxide-based multilayer electrodes. Adv Eng Mater 15. doi:10.1002/adem.201200169

  • Rogers JA et al (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA 98:4835–4840. doi:10.1073/pnas.091588098

    Article  Google Scholar 

  • Schmidt H, Flugge H, Winkler T, Bulow T, Riedl T, Kowalsky W (2009) Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl Phys Lett 94. doi:10.1063/1.3154556

  • Sekitani T, Someya T (2012) Stretchable organic integrated circuits for large-area electronic skin surfaces. MRS Bull 37:236–245. doi:10.1557/Mrs.2012.42

    Article  Google Scholar 

  • Service RF (2006) Materials science—inorganic electronics begin to flex their muscle. Science 312:1593–1594. doi:10.1126/science.312.5780.1593

    Article  Google Scholar 

  • Sun YG, Choi WM, Jiang HQ, Huang YGY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1:201–207. doi:10.1038/nnano.2006.131

    Article  Google Scholar 

  • Webb RC et al (2013) Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 12:938–944. doi:10.1038/nmat3755. http://www.nature.com/nmat/journal/v12/n10/abs/nmat3755.html#supplementary-information

  • Widlund T, Yang S, Hsu Y-Y, Lu N (2014) Stretchability and compliance of freestanding serpentine-shaped ribbons. Int J Solids Struct 51:4026–4037. doi:10.1016/j.ijsolstr.2014.07.025

  • Xu S et al (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4. doi:10.1038/Ncomms2553

  • Yang S, Lu N (2013) Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 13:8577–8594

  • Yeo W-H et al (2013) Multi-functional electronics: multifunctional epidermal electronics printed directly onto the skin (Adv. Mater. 20/2013). Adv Mater 25:2772–2772. doi:10.1002/adma.201370133

    Article  Google Scholar 

  • Yoon J et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915. doi:10.1038/Nmat2287

    Article  Google Scholar 

  • Zhang Y et al (2013) Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater 61:7816–7827. doi:10.1016/j.actamat.2013.09.020

    Article  Google Scholar 

  • Zhang YH et al (2013b) Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9:8062–8070. doi:10.1039/C3sm51360b

    Article  Google Scholar 

  • Zhang YH et al (2014) A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J Mech Phys Solids 72:115–130. doi:10.1016/j.jmps.2014.07.011

    Article  Google Scholar 

  • Zheng J, Peng C, Jun L, Teng L (2012) A map of competing buckling-driven failure modes of substrate-supported thin brittle films. Thin Solid Films 520. doi:10.1016/j.tsf.2012.07.011

Download references

Acknowledgments

This work is supported by the NASCENT (Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies) Center under NSF Grant No. 1160494. The authors thank Prof. Brian Korgel and Mr. Taylor Harvey for the use of their sputter system to deposit some early batches of the ITO samples. S.Y. acknowledges the George J. Heuer, Jr. Ph.D. endowed graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanshu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Su, B., Bitar, G. et al. Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates. Int J Fract 190, 99–110 (2014). https://doi.org/10.1007/s10704-014-9977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-014-9977-x

Keywords

Navigation