Skip to main content
Log in

A model for predicting crack initiation in forged M3:2 tool steel under high cycle fatigue

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

AISI type M3 class 2 tool steel (or in German designation DIN: HS6-5-3 tool steel) is most commonly used in tooling industry, and also in some engine parts. Those components are usually subjected to cyclic stresses and mostly fail by fatigue. Fatigue crack initiation in this material occupies large fraction of total lifetime and strongly depends on microstructural features of primary and eutectic carbides, such as shape, shape ratio, volume fraction, the distribution of carbides as well as load ratio. To model fatigue initiation mechanisms of forged M3:2 tool steel, McDowell’s model was modified and developed for different length-scales. For fatigue crack formation and short crack growth, a hierarchical approach was used and the life time of these stages were estimated based on the local cyclic plasticity. Through this relation the effect of microstructural features on both fatigue crack formation and short crack growth in the material were identified. The results of the proposed model have explicitly reflected the influence of microstructural features on both fatigue crack formation and propagation in forged M3:2 tool steel. Moreover, the model can be used for improving the fatigue resistance of a tool steel component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(a\) :

Crack length

\(a_{inc}\) :

Crack incubation length

\(a_{o}\) :

Critical defect

\(a_{sc}\) :

Short crack length

\(\alpha \) :

Manson–Coffin law’s exponent

\(b\) :

Fatigue ductility exponent

\(c\) :

Kinematic hardening modulus

\(C_{inc}\) :

Manson–Coffin law’s coefficient

\(C_{\varepsilon }\) :

Constraint coefficient

\(d_{o}\) :

Dislocation barries spacing

\(D_{p}\) :

Average diameter of carbides

\(\varDelta {CTOD}\) :

Crack Tip Opening Diplacement

\(\varDelta {\varGamma }\) :

Fatemi–Socie parameter

\(\varDelta {K}\) :

Stress intensity factor

\(\varDelta {K_{th}}\) :

Threshold for long crack

\(\varDelta {K_{th,a}}\) :

Threshold for short crack

\(\frac{da}{dN}\) :

Crack growth rate

\(E\) :

Young modulus

\(\varepsilon '_{f}\) :

Fatigue ductility coefficient

\(F\) :

Strengthening ratio

\(HCF\) :

High Cycle Fatigue

\(h/w\) :

Shape ratio of primary carbide

\(K'\) :

Cyclic hardening coefficient

\(LCF\) :

Low Cycle Fatigue

\(MSF\) :

Multi-Stage Fatigue

\(n'\) :

Cyclic hardening exponent

\(N_{lc}\) :

Long crack life

\(N_{inc}\) :

Fatigue crack incubation life

\(N_{msc}\) :

Lifetime of microstructurally short crack

\(N_{psc}\) :

Lifetime of physically short crack

\(N_{T}\) :

Total lifetime

\(r\) :

Dynamic rate of back stress tensor

\(R_{\varepsilon }\) :

Load ratio

\(RVE\) :

Representative Volume Element

\(\varPhi \) :

Yield surface

\(s\) :

Striation spacing

\(S_{p}\) :

Average distance of primary carbides

\(\sigma _{y,m}\) :

Cyclic yield stress of the matrix

\(\sigma '_{y}\) :

Cyclic yield strength

\(\sigma _{ys}\) :

Yield strength

\(\sigma _{ult}\) :

Ultimate tensile strength

\(Y\) :

Geometry factor

\(U\) :

A function of load ratio

\(V_{m}\) :

Volume fraction of the matrix

\(V_{p}\) :

Volume fraction of primary carbides

References

  • Antretter T, Fischer FD (1997) Critical shapes and arrangement of carbides in high-speed tool steel. Metar Sci Eng A 237:6–11

    Article  Google Scholar 

  • Berns H, Broeckmann C, Hinz HF: Creep of high speed steels, Part I-experimental investigation. In: 6th international tooling conference. Karlstad, Sweden, pp 325–348 (2002)

  • Berns H, Lueg J, Trojahn W, Waehling R, Wisell H (1987) Fatigue behavior of conventional and powder metallurgical high speed steel. Powder Metall Int 19:22–26

    Google Scholar 

  • Berns H, Melander A, Weichert D, Asnafi N, Broeckmann C, Gross-Weege A (1998) A new material for cold forging tools. Comput Mater Sci 11:166–180

    Article  Google Scholar 

  • Berns H, Trojahn W (1985) Einfluss der Waermebehandlung auf das Ermuedungsverhalten ledeburitischer Kaltarbeitsstaehle. VDI-Z 127:889–892

    Google Scholar 

  • Broeckmann C (2001) Kriechen partikel-verstaerkter metallischer Werkstoffe. VDI Verlag GmbH, Duesseldorf

    Google Scholar 

  • Broeckmann C, Packeisen A, Theisen W: Fatigue of carbide rich materials. In: 7th international tooling conference. Torino, Italy, pp 3–12 (2006)

  • Brondsted P, Skov-Hansen P (1998) Fatigue properties of high-strength materials used in cold-forging tools. Int J Fatigue 20:373–381

    Article  Google Scholar 

  • Bruzii MS, McHugh PE (2004) Micromechanical investigation of the fatigue crack growth behaviour of Al-SiC MMCs. Int J Fatigue 26:795–804

    Article  Google Scholar 

  • Chan KS (1993) Scaling laws for fatigue crack growth of large cracks in steels. Metall Trans A 24:2474–2485

    Google Scholar 

  • Chapetti MD (2003) Fatigue propagation threshold of short cracks under constant amplitude loading. Int J Fatigue 25:1319–1326

    Article  Google Scholar 

  • Chawla N, Deng X (2005) Microstructure and mechanical behavior of porous sintered steels. Metar Sci Eng A 390:98–112

    Article  Google Scholar 

  • Coffin LFJ (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng 76:931–950

    Google Scholar 

  • Ding HZ, Biermann H, Hartmann O (2002a) A low cycle fatigue model of a short-fibre reinforced 6061 aluminium alloy metal matrix composite. Compos Sci Technol 62:2189–2199

    Google Scholar 

  • Ding HZ, Biermann H, Hartmann O (2003) A low cycle fatigue crack growth and life prediction of a short-fibre reinforced metal matrix composite. Mater Sci Eng A 333:295–305

    Article  Google Scholar 

  • Ding HZ, Biermann H, Hartmann O, Mughrabi H (2002b) Modelling low-cycle fatigue life of particulate-reinforced metal matrix composites. Compos Sci Technol 62:2189–2199

    Google Scholar 

  • Ding HZ, Mughrabi H, Hoeppel HW (2002c) A low cycle fatigue prediction model of ultrafine-grained metal. Fract Eng Mater Struct 25:975–984

    Google Scholar 

  • Fan J, McDowell DL, Horstemeyer MF, Gall K (2003) Cyclic plasticity at pores and inclusions in cast Al-Si alloys. Eng Fract Mech 70:1281–1302

    Article  Google Scholar 

  • Fatemi A, Socie D (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11(3):145–165

    Article  Google Scholar 

  • Feyel F (1999) Multiscale FE2 elastoplastic analysis of composite structure. Comput Mater Sci 16:344–354

    Article  Google Scholar 

  • Fredriksson, G., Bergstroem, J., Hogmark, S.: Crack growth in cold work tool steels-influence of surface condition, microstructure and hardness. In: 6th International tooling conference. Karlstard, Sweeden, pp 125–135 (2002)

  • Friend CM (1987) The effect of matrix properties on reinforcement in short alumina fibre-aluminium metal matrix composites. J Mater Sci Eng 22:3005–3010

    Google Scholar 

  • Fukaura K, Yokoyama Y, Yokoi D, Tsujii N, Ono K (2004) Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations. Matall Meter Trans A 35:1289–1300

    Google Scholar 

  • Gall K, Horstemeyer MF, Degner BW, McDowell DL, Fan J (2001) On the driving force for fatigue crack formation from inclusions and voids in a cast A356 Aluminum alloy. Int J Fracture 108:207–233

    Article  Google Scholar 

  • Giang, NA, Bezold A, Broeckmann C: Simulation of fatigue crack incubation of casted/forged HS6-5-3 tool steel under HCF regime. In: 3rd fatigue symposium. Leoben, Austria, pp 6–25 (2012)

  • Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74:2518–2534

    Article  Google Scholar 

  • Goh CH, Wallace JM, Neu RW, McDowell DL (2001) Polycrystal plasticity simulations of fretting fatigue. Int J Fatigue 23:423–435

    Article  Google Scholar 

  • Guinea GV, Pastor JY, Planas J, Elisces M (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int J Fracture 89:103–116

    Article  Google Scholar 

  • Hibbitt HD, Karlsson BI, Sorensen EP: ABAQUS-Standard, User Manual, Version 10.1. Inc., Pawtucket RI, USA (2011)

  • Jia S, Povirk GL (1998) Modelling the effects of reinforcement distribution on the elastic properties of composite materials. Model Simul Mater Sci Eng 6:587–602

    Article  Google Scholar 

  • Kanazawa T, Machida S (1975) On the effect of cyclic stress ratio on the fatigue crack propagation. Eng Fract Mech 7:445–455

    Article  Google Scholar 

  • Kaner KU (2006) Metal metrix composite. Wiley-VCH Verlag, Weihen

    Book  Google Scholar 

  • Kujawski D (2003) \({\Delta } {K}_{eff}\) parameter under re-examination. Int J Fatigue 25:793–800

    Article  Google Scholar 

  • Lal DN (1993) The influence of strength and stress ratio on short-crack thresholds and non-propagating fatigue crack. Fatigue Eng Mater Struct 16:419–428

    Article  Google Scholar 

  • Laz PJ, Hillberry BM (1998) Fatigue life prediction from inclusion initiated crack. Int J Fatigue 20:263–270

    Article  Google Scholar 

  • Li CS, Ellyin F (1995) On crack phases of particlulate-reinforced metal matrix composites. Fatigue Fract Eng Mater Mater Struct 18:1299–1309

    Article  Google Scholar 

  • Lukas P (1996) Fatigue crack nucleation and microstructure. ASTM hand book: Fatigue and fracture 19:234–267

    Google Scholar 

  • Majumdar BS, Yegneswaran AH, Rohatgi PK (1984) Strength and fracture behavior of metal matrix particulate composites. Mater Sci Eng 68:85–96

    Article  Google Scholar 

  • Manson SS: Behaviour of materials under conditions of thermal stress. Technical report NACA-TR-1170, National Advisory Commission on Aeronautics (1954)

  • McDowell DL (2007) Simulation-based strategies for microstructure-sensitive fatigue modeling. Mater Sci Eng A 468:4–14

    Article  Google Scholar 

  • McDowell DL, Gall K, Horstemeyer M, Fan J (2003) Microstructure-based fatigue modeling of cast A356–T6 Alloy. Eng Fract Mech 70:49–80

    Article  Google Scholar 

  • Medvedeva A: Tool steels for tool holder applications: microstructure and mechanical properties. Ph.D. thesis, Karlstad University, Sweden (2008)

  • Meurling F, Melander A, Tidesten M, Westin L (2007) Influence of carbide and inclusion contents on the fatigue properties of high speed steel and tool steels. Int J Fatige 23:215–224

    Article  Google Scholar 

  • Miller KJ (1995) Materials science perspective of metal fatigue resistance. Anales de mecanica de la fractura 12:1–10

    Google Scholar 

  • Mishnaevsky JL, Lippmann N, Schmauder S: Mico-mechanisms and modelling of crack initiation and growth in tool steels: role of primary carbides. Z.Metallkd 94, pp 676–681 (2003)

    Google Scholar 

  • Newman JC (1984) A crack opening stress equation for fatigue crack growth. Int. J Fract 24:131–135

    Article  Google Scholar 

  • Nisitani H, Goto M (1987) A small crack growth law and its application to the evaluation of fatigue life. In: Miller KJ, de los Rios ER (eds) The behavior of short fatigue cracks, Mechanical Engineering Publications, London, UK, pp 461–478

  • Park KS, Cho SJ, Lee KY, Kim GS, Lee CS (2007) Effect of volume fraction of un-dissolve cementite on the high cycle fatigue properties of high carbon steels. Int J Fatigue 29:1863–1867

    Article  Google Scholar 

  • Pei H, Yang J, Ke W (1989) Growth of short cracks of A537CL1 steel under fatigue loading in 3.5% NaCl solution. Acta Metall Sinica 2:167–171

    Google Scholar 

  • Picas I (2012) Mechanical behaviour of tools for shearing ultra high-strength steels: influence of the microstructure on fracture and fatigue micro-mechanisms of tool steels and evaluation of micro-mechanical damage in tools. Ph.D. thesis, Universitat Politecnica de Catalunya, Spain (2012)

  • Picas I, Cuadrado N, Casellas D, Goez A, Llanes L (2010) Microstructural effects on fatigue crack nucleation in cold work tool steels. Proc Eng 2:1777–1785

    Article  Google Scholar 

  • Prasannavenkatesan R (2009) Microstructure-sensitive fatigue modeling of heat treated and shot peened martensitic gear steels. Ph.D. thesis, Georgia Institute of Technology, USA (2009)

  • Ringsberg JW (2005) Shear model growth of short surface-breaking rcf crack. Wear 258:955–963

    Article  Google Scholar 

  • Robertson IM (1994) Correlation of fatigue crack growth rate at different stress ratios for quenched and tempered steels and other alloys. Fatigue Fract Eng. Mater Struct 17:327–338

    Article  Google Scholar 

  • Santus C, Taylor D (2009) Physically short crack propagation in metals during high cycle fatigue. Int J Fatigue 31:1356–1365

    Article  Google Scholar 

  • Shenoy MM, Kumar RS, McDowell DL (2005) Modeling effects of nonmetallic inclusions on LCF in DS Nikel-base superalloys. Int J Fatigue 27:113–127

    Article  Google Scholar 

  • Simon PW, Taylor D (1997) Reliability assessment from fatigue micro-crack data. IEEE Trans Reliab 46:165–171

    Article  Google Scholar 

  • Sohar CR (2011) Lifetime controlling defect in tool steels. Springer, Berlin

    Book  Google Scholar 

  • Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, England

  • Taylor D, Knott JF (1981) Fatigue crack propagation behavior of short crack; the effect of microstructure. Fatigue Eng Mater Struct 4:147–155

    Google Scholar 

  • Tokaji K, Ogawa T, Harada Y (1987) Evaluation on limitation of linear elastic fracture mechanics for small fatigue crack growth. Fatigue Fract Eng Mater Struct 10:281–289

    Google Scholar 

  • Vatavuk J, Domingues D, Totten GE (2006) Mechanical properties of powder metallurgy and conventional AISI M3 class 2 high speed steels. In: 7th international tooling conference. Torino, Italy, pp 821–827 (2006)

  • Wang QY, Berard JY, Rathery S, Bathias C (1999) High cycle fatigue crack initiation and propagation behavior of high-strength spring steel wire. Fatigue Fract Eng Mater Struct 22:673–677

    Article  Google Scholar 

  • Xue Y, McDowell DL, Horstemeyer MF, Dale MH, Jordon JB (2007) Microstructure-based multistage fatigue modeling of Aluminum alloy 7075–T651. Eng Fract Mech 74:2810–2823

    Article  Google Scholar 

  • Yao J, Qu XH, He XB, Zhang L (2011) Inclusion-controlled high cycle fatigue behavior of a high V alloyed powder metallurgy cold-working tool steel. Mater Sci Eng A 528:4180–4186

    Article  Google Scholar 

  • Zhang HC, Huang KZ, Cheng JH (2004) A new model for predicting small crack growth rates. Mater Sci Forum 471:330–334

    Article  Google Scholar 

  • Zhang Q, Chen DL (2005) A model for low cycle fatigue life in discontinuously reinforced MMCs. Int J Fatigue 27:417–427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Giang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giang, N.A., Ozden, U.A., Bezold, A. et al. A model for predicting crack initiation in forged M3:2 tool steel under high cycle fatigue. Int J Fract 187, 145–158 (2014). https://doi.org/10.1007/s10704-013-9927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-013-9927-z

Keywords

Navigation