Skip to main content
Log in

Calibration of brittle fracture models by sharp indenters and inverse analysis

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In several engineering areas structural analyses concern also fracture processes of brittle materials and employ cohesive crack models. Calibrations of such models, i.e. identification of their parameters by tests, computer simulations of the tests and inverse analyses, have been investigated in the literature particularly with reference to non-destructive indentation tests at various scales.To this timely research, the following contributions are presented in this paper: a simple piecewise-linear cohesive crack model is considered for brittle materials (here glass, for example); for its calibration by “non-destructive” indentation tests novel shapes are attributed to instrumented indenters, in order to make fracture the dominant feature of the specimen response to the test; such shapes are comparatively examined and optimized by sensitivity analyses; a procedure for inverse analysis is developed and computationally tested, based on penetration versus increasing force only (no imprint measurements by profilometers) and is made “economical” (i.e. computationally fast, “in situ” by small computers) by model reduction through proper orthogonal decomposition in view of repeated industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • ABAQUS/Standard (2010) Theory and user’s manuals, release 6.10, Dassault Systèmes Simulia Corp., Providence, RI, USA

  • Abdul-Baqi A, Van der Giessen E (2002) Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates. Int J Solids Struct 39:1427–1442. doi:10.1016/S0020-7683(01)00280-3

    Article  Google Scholar 

  • Bocciarelli M, Bolzon G, Maier G (2005) Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech Mater 37:855–868. doi:10.1016/j.mechmat.2004.09.001

    Article  Google Scholar 

  • Bocciarelli M, Maier G (2007) Indentation and imprint mapping method for identification of residual stresses. Comput Mater Sci 39:381–392. doi:10.1016/j.commatsci.2006.07.001

    Article  CAS  Google Scholar 

  • Bolzon G, Fedele R, Maier G (2002) Parameter identification of a cohesive crack model by Kalman filter. Comput Methods Appl Mech Eng 191:2847–2871. doi:10.1016/S0045-7825(02)00223-2

    Article  Google Scholar 

  • Bolzon G, Maier G, Panico M (2004) Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct 41:2957–2975. doi:10.1016/j.ijsolstr.2004.01.025

    Article  Google Scholar 

  • Bolzon G, Maier G, Novati G (1994) Some aspects of quasi-brittle fracture analysis as a linear complementarity problem. In: Bažant ZP, Bittnar Z, Jirásek M, Mazars J (eds) Fracture and damage in quasi-brittle structures. E and FN Spon, London, pp 159–174

  • Broek D (1989) The practical use of fracture mechanics. Kluwer, London

    Book  Google Scholar 

  • Buhmann MD (2003) Radial basis functions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bui HD (1994) Inverse problems in the mechanics of materials: an introduction. CRC Press, Boca Raton

    Google Scholar 

  • Buljak V (2012) Inverse analysis with model reduction— Proper Orthogonal Decomposition in structural mechanics. Springer, Berlin. doi:10.1007/978-3-642-22703-5

  • Buljak V, Maier G (2011) Proper orthogonal decomposition and radial basis functions in material characterization based on instrumented indentation. Eng Struct 33:492–501. doi:10.1016/j.engstruct.2010.11.006

    Article  Google Scholar 

  • Buljak V, Maier G (2012) Identification of residual stresses by instrumented elliptical indentation and inverse analysis. Mech Res Commun 41:21–29. doi:10.1016/j.mechrescom.2012.02.002. (Corrigendum in Mechanics Research Communications 46,p. 90, 2012, doi:10.1016/j.mechrescom.2012.07.005

  • Cao YP, Lu J (2004) A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Materialia 52:4023–4032. doi:10.1016/j.actamat.2004.05.018

    Article  CAS  Google Scholar 

  • Chen X, Ogasawara N, Zhao M, Chiba N (2007) On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J Mech Phys Solids 55:1618–1660. doi:10.1016/j.jmps.2007.01.010

    Article  Google Scholar 

  • Cocchetti G, Maier G, Shen X (2002) Piecewise-linear models for interfaces and mixed mode cohesive cracks. Comput Methods Eng Sci 3:279–298. doi:10.3970/cmes.2002.003.279

    Google Scholar 

  • Conn AR, Gould NIM, Toint PL (2000) Trust-region methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Book  Google Scholar 

  • Cottle RW, Pang JS, Stone RE (1992) The linear complementarity problem. Academic Press, Boston

    Google Scholar 

  • Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems, vol II. Springer Series in Operations Research and Financial Engineering, Berlin

  • Jirasek M, Bažant ZP (2001) Inelastic analysis of structures. Wiley, New York

    Google Scholar 

  • Kaliszky S (1989) Plasticity—theory and engineering applications. Elsevier, Amsterdam

    Google Scholar 

  • Kleiber M, Antunez H, Hien TD, Kowalczyk P (1997) Parameter sensitivity in nonlinear mechanics. Theory and finite element computations. Wiley, New York

    Google Scholar 

  • Le Bourhis E (2007) Glass structure. In: Mechanics and technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi:10.1002/9783527617029.ch5

  • Luo ZQ, Pang JS, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge

  • Maier G (1970) A matrix structural theory of piecewise-linear plasticity with interacting yield planes. Meccanica 5:55–66. doi:/10.1007/BF02133524

    Google Scholar 

  • Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics. Int J Fract 138:47–73. doi:10.1007/s10704-006-7153-7

    Article  Google Scholar 

  • Maier G, Bolzon G, Buljak V, Miller B (2011) Comparative assessment of three different approaches in material parameter characterization based on instrumented indentation, using only the indentation curve, only the residual imprint, and both experimental data. Inverse Probl Sci Eng 19:815–837. doi:10.1080/17415977.2011.551931

    Article  Google Scholar 

  • Matlab (2009). Matlab user’s guide, The Math Works Inc., Natick, MA. www.mathworks.it

  • McGee T (2006) Glass manufacturing engineering. Wiley, New York

    Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables from a computer code. Technometrics 21:239–245. doi:10.1080/00401706.1979.10489755

    Google Scholar 

  • Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumental indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. doi:10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  • Ostrowski Z, Bialecki RA, Kassab AJ (2008) Solving inverse heat conduction problems using trained POD-RBF network. Inverse Probl Sci Eng 16:39–54. doi:10.1080/17415970701198290

    Article  Google Scholar 

  • Stavroulakis GE (2000) Inverse and crack identification problems in engineering mechanics. Kluwer, Dordrecht

    Google Scholar 

  • Suresh S, Giannakopoulos AE (1998) A new method for estimating residual stresses by instrumented sharp indentation. Acta Materialia 46:5755–5767. doi:10.1016/S1359-6454(98)00226-2

    Article  CAS  Google Scholar 

  • Tin-Loi F, Que NS (2001) Parameter identification of quasi-brittle materials as a mathematical program with equilibrium constraints. Comput Methods Appl Mech Eng 190:5819–5836. doi:10.1016/S0045-7825(01)00199-2

    Article  Google Scholar 

  • Tin-Loi F, Que NS (2002) Nonlinear programming approaches for an inverse problem in quasi-brittle fracture. Int J Mech Sci 44:843–858. doi:10.1016/S0020-7403(02)00035-8

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulation of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434. doi:10.1016/0022-5096(94)90003-5

    Article  Google Scholar 

  • Zhi-He J, Glaucio H, Paulino RH, Dodds J (2003) Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Eng Fract Mech 70:1885–1912. doi:10.1016/S0013-7944(03)00130-9

    Article  Google Scholar 

Download references

Acknowledgments

The results presented in this paper are related to research projects on structural diagnoses by non-destructive tests in collaboration with VeTec Co., Marghera (Venezia, Italy), and in the framework of the European KMM-VIN coordinated by the Polish Academy of Sciences. This study is also related to the research project no 35006 supported by Serbian Ministry of Science and Technological Development. The authors acknowledge with thanks the supports of the above institutions to the research which led to the results here summarized, and the useful information provided by Professor Luigi Biolzi on glass materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buljak, V., Cocchetti, G. & Maier, G. Calibration of brittle fracture models by sharp indenters and inverse analysis. Int J Fract 184, 123–136 (2013). https://doi.org/10.1007/s10704-013-9841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-013-9841-4

Keywords

Navigation