Skip to main content
Log in

Simulation of the shear-tensile mode transition on dynamic crack propagations

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We propose an approach to the simulation of the shear-tensile transition in dynamic crack growth based on two points: a new crack propagation criterion which is suitable for shear, and an algorithm which is capable of handling the transition from shear mode to tensile mode and back in the same simulation. The new crack propagation criterion for brittle crack growth is based on the maximum shear stress rather than the maximum hoop stress. The shear stress direction becomes the new crack’s direction in which propagation is initiated for shear-type failure. The stress state at the crack’s tip is obtained through a local approach which can be used even in the case of extensive plasticity. Additionally, we propose to control the transition from shear mode to tensile mode during the simulation of crack propagation using an equivalent strain estimated at the crack’s tip. Depending on a threshold strain, the propagation direction is predicted using the maximum shear stress (in the shear case) or the maximum hoop stress (in the tensile case).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Society for Testing and Material (1986) A2—special requirements for testing compact specimen. ASTM E1820, US ASTM

  • Armero JH, Linder C (2009) Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract 160: 119–141

    Article  Google Scholar 

  • Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58: 1873–1905

    Article  Google Scholar 

  • Black T, Belytschko T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45: 601–620

    Article  Google Scholar 

  • Bordas S, Rabzuck T., Hung NX, Nguyen VP et al (2009) Strain smoothing in FEM and X-FEM. Comput Struct 98(24): 1419–1443

    Google Scholar 

  • Bouchard PO, Bay F, Chastel Y (2003) Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng 192(35–36): 3887–3908

    Article  Google Scholar 

  • Combescure A, Gravouil A, Grégoire D, Réthoré J (2008) X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation. Comput Methods Appl Mech Eng 197(5): 309–318

    Article  Google Scholar 

  • Cazes F, Coret M, Combescure A, Gravouil A (2009) A thermodynamic method for the construction of a cohesive law from a non local damage model. Int J Solids Struct 46: 1476–1490

    Article  CAS  Google Scholar 

  • Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 2: Element byelement stableexplicitexplicit dynamic scheme. Comput Methods Appl Mech Eng 198: 2318–2328

    Article  Google Scholar 

  • Elguedj T, Gravouil A, Combescure A (2005) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 198: 2318–2328

    Google Scholar 

  • Elguedj T, Gravouil A, Maigre H (2009) An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput Methods Appl Mech Eng 198: 2297–2317

    Article  Google Scholar 

  • Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–525

    Article  Google Scholar 

  • Europlexus web page (2010) http://europlexus.jrc.ec.europa.eu/ (March, 10th, 2010)

  • Francois D, Pineau A, Zaoui A (1998) Mechanical behaviour of materials, vol 2. Kluwer, Dordrecht

    Book  Google Scholar 

  • Fries TP, Belytschko T (2010) The extended generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3): 304–353

    Google Scholar 

  • Grégoire D, Maigre H, Combescure A (2009) New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials. Int J Solids Struct 46: 18–19

    Article  Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow of solids. Philos Trans R Soc Lond Ser A Math Phys Eng 221: 163–198

    Article  Google Scholar 

  • Haboussa D, Grégoire D, Elguedj T, Maigre H, Combescure A (2010) X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations. Int J Numer Methods Eng 46: 18–19

    Google Scholar 

  • Ji H, Chopp D, Dolbow JE (2002) A hybrid extended finite element/level set method for modeling phase transformations. Int J Numer Methods Eng 54: 1209–1233

    Article  Google Scholar 

  • Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. In: Chiem CY, Kunze H-D, Meyer LW (eds) Impact loading and dynamic behavior of materials, vol 1. DGM-Verlag, Oberursel, pp 185–195

  • Kanninen M, Popelar C (1985) Advanced fracture mechanics. Oxford University Press, Oxford

    Google Scholar 

  • Li S, Liu WK, Rosakis AJ, Belytschko T, Hao W (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. Int J Solids Struct 67: 868–893

    Google Scholar 

  • Mazars J (1984) Application de la mecanique de l’endommagement au comportement non-lineaire et à à la rupture du beton de structure (in French). PhD thesis, ENSET, France

  • Menouillard T, Belytschko T (2010) Dynamic fracture with meshfree enriched XFEM. Acta Mech 213: 53–69

    Article  Google Scholar 

  • Menouillard T, Song JH, Duan Q, Belytschko T (2010) Time dependant crack tip enrichement for dynamic crack propagation. Int J Fract 162: 33–49

    Article  Google Scholar 

  • Menouillard T, Réthoré J, Combescure A, Bung H (2008a) Efficient explicit time stepping for the extended finite element method. Int J Numer Methods Eng 68: 11–38

    Google Scholar 

  • Menouillard T, Réthoré J, Moës, Combescure A, Bung H (2008b) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74(3): 447–474

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150

    Article  Google Scholar 

  • Phongthanapanich S, Dechaumphai P (2004) Adaptive delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elem Anal Des 40(13–14): 1753–1771

    Article  Google Scholar 

  • Prabel B, Combescure A, Marie S (2008) Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel. Eng Fract Mech 75(10): 2984–3009

    Article  Google Scholar 

  • Prabel B, Gravouil A, Combescure A, Marie S (2007) Level set X-FEM non matching meshes: application to dynamic crack propagation in elastic-plastic media. Int J Numer Methods Eng 69: 1553–1569

    Article  Google Scholar 

  • Remmers J, Borst R de, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69–77

    Article  Google Scholar 

  • Réthoré J, Gravouil A, Combescure A (2005) An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int J Numer Methods Eng 63: 631–659

    Article  Google Scholar 

  • Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67: 868–893

    Article  Google Scholar 

  • Wells G, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50: 2667–2682

    Article  Google Scholar 

  • Williams ML (1957) On stress distribution at the base of stationary cracks. J Appl Mech 24(1): 109–114

    Google Scholar 

  • Zhou M, Rosakis AJ, Ravichandran G (1996a) Dynamically propagating shear bands in impact-loaded prenotched plates-II. Experimental investigations of temperature signatures and propagation speed. J Mech Phys Solids 44: 981–1006

    Article  CAS  Google Scholar 

  • Zhou M, Rosakis AJ, Ravichandran G (1996b) Dynamically propagating shear bands in impact-loaded prenotched plates-I. Numerical simulations. J Mech Phys Solids 44: 1007–1032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Combescure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haboussa, D., Elguedj, T., Leblé, B. et al. Simulation of the shear-tensile mode transition on dynamic crack propagations. Int J Fract 178, 195–213 (2012). https://doi.org/10.1007/s10704-012-9729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9729-8

Keywords

Navigation