Skip to main content
Log in

Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The non-local theory solution of a mode-I permeable crack in a piezoelectric/piezomagnetic composite material plane was given by using the generalized Almansi’s theorem and the Schmidt method in this paper. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Numerical examples were provided to show the effects of the crack length and the lattice parameter on the stress field, the electric displacement field and the magnetic flux field near the crack tips. Unlike the classical elasticity solutions, it is found that no stress, electric displacement and magnetic flux singularities are present at the crack tips in piezoelectric/piezomagnetic composite materials. The non-local elastic solution yields a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen WQ, Lee KY, Ding HJ (2004) General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int J Eng Sci 42(13–14): 1361–1379

    Article  Google Scholar 

  • Erdelyi A (1954) Tables of integral transforms, vol 1. McGraw-Hill, New York pp, pp 34–89

    Google Scholar 

  • Edelen DGB (1976) Non-local field theory. In: Eringen AC (eds) Continuum physics, vol 4. Academic Press, New York, pp 75–204

    Google Scholar 

  • Eringen AC (1976) Non-local polar field theory. In: Eringen AC (eds) Continuum physics, vol 4. Academic Press, New York, pp 205–267

    Google Scholar 

  • Eringen AC, Speziale CG, Kim BS (1977) Crack tip problem in non-local elasticity. J Mech Phys Solids 25(5): 339–355

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Eringen AC (1978) Linear crack subject to shear. Int J Fract 14(4): 367–379

    Article  MathSciNet  Google Scholar 

  • Eringen AC (1979) Linear crack subject to anti-plane shear. Eng Fract Mech 12(2): 211–219

    Article  Google Scholar 

  • Eringen AC (1983) Interaction of a dislocation with a crack. J Appl Phys 54(12): 6811–6817

    Article  CAS  ADS  Google Scholar 

  • Eringen AC, Kim BS (1977) Relation between non-local elasticity and lattice dynamics. Cryst Lattice Defects 7(1): 51–57

    CAS  Google Scholar 

  • Gao CF, Kessler H, Balke H (2003) Fracture analysis of electromagnetic thermoelastic solids. Eur J Mech A Solid 22(3): 433–442

    MATH  Google Scholar 

  • Gao CF, Kessler H, Balke H (2003) Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int J Eng Sci 41(9): 969–981

    Article  MathSciNet  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1980) Table of integral, series and products. Academic Press, New York, p.361, p.333, p.483

  • Green AE, Rivilin RS (1965) Multipolar continuum mechanics: functional theory. I. In: Proceeding of the royal society of London A, vol 284, pp 303–315

  • Hou PF, Teng GH, Chen HR (2009) Three-dimensional Green’s function for a point heat source in two-phase transversely isotropic magneto-electro-thermo-elastic material. Mech Mater 41(3): 329–338

    Article  Google Scholar 

  • Itou S (1978) Three dimensional waves propagation in a cracked elastic solid. J Appl Mech 45(4): 807–811

    MATH  Google Scholar 

  • Liu JX, Liu XL, Zhao YB (2001) Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int J Eng Sci 39(12): 1405–1418

    Article  Google Scholar 

  • Morse PM, Feshbach H (1958) Methods of theoretical physics. McGraw-Hill, New York, pp 828–930

    Google Scholar 

  • Pan KL, Takeda N (1998) Non-local stress field of interface dislocations. Archive Appl Mech 68(3–4): 179–184

    Article  MATH  Google Scholar 

  • Parton VS (1976) Fracture mechanics of piezoelectric materials. ACTA Astronautra 3(9–10): 671–683

    Article  MATH  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J Appl Mech 35(3): 379–386

    Google Scholar 

  • Sih GC, Song ZF (2003) Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite. Theor Appl Fract Mech 39(3): 209–227

    Article  CAS  Google Scholar 

  • Soh AK, Fang DN, Lee KL (2000) Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur J Mech A Solid 19(6): 961–977

    Article  MATH  Google Scholar 

  • Song ZF, Sih GC (2003) Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor Appl Fract Mech 39(3): 189–207

    Article  CAS  Google Scholar 

  • Spyropoulos CP, Sih GC, Song ZF (2003) Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theor Appl Fract Mech 39(3): 281–289

    Article  CAS  Google Scholar 

  • Tian WY, Gabbert U (2004) Multiple crack interaction problem in magnetoelectroelastic solids. Eur J Mech A Solid 23(4): 599–614

    Article  MATH  Google Scholar 

  • Wang BL, Mai YW (2004) Fracture of piezoelectromagnetic materials. Mech Res Commun 31(1): 65–73

    Article  MATH  Google Scholar 

  • Wang X, Shen YP (2002) The general solution of three-dimensional problems in magnetoelectroelastic media. Int J Eng Sci 40(10): 1069–1080

    MathSciNet  Google Scholar 

  • Wu TL, Huang JH (2000) Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int J Solids Struct 37(21): 2981–3009

    Article  MATH  Google Scholar 

  • Yan WF (1967) Axisymmetric slipless indentation of an infinite elastic cylinder. SIAM J Appl Math 15(2): 219–227

    Google Scholar 

  • Yang FQ (2001) Fracture mechanics for a mode I crack in piezoelectric materials. Int J Solids Struct 38(21): 3813–3830

    Article  MATH  Google Scholar 

  • Zhao MH, Fan CY, Yang F, Liu T (2007) Analysis method of planar cracks of arbitrary shape in the isotropic plane of a three-dimensional transversely isotropic magnetoelectroelastic medium. Int J Solids Struct 44(13): 4505–4523

    Article  MATH  Google Scholar 

  • Zhou ZG, Wu LZ, Du SY (2006) Non-local theory solution for a Mode I crack in piezoelectric materials. Eur J Mech A Solids 25(5): 793–807

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou ZG, Wu LZ, Du SY (2007) Non-local theory solution of two Mode-I collinear cracks in the piezoelectric materials. Mech Adv Mater Struct 14(3): 191–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Gong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, PW., Zhou, ZG. & Wu, LZ. Non-local theory solution of a mode-I crack in a piezoelectric/piezomagnetic composite material plane. Int J Fract 164, 213–229 (2010). https://doi.org/10.1007/s10704-010-9477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9477-6

Keywords

Navigation