Skip to main content
Log in

The effect of stress state factor on fracture of sandstones under true triaxial loading

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Experimental results on rock deformation and fracture under true triaxial compression have revealed a misfit between strain state and stress state, strain state varying from generalized compression to generalized shear at σ3 ≠ 0. This misfit can lead to data misinterpretation during the stress field reconstruction after unloading. Fracture of rock specimens under true triaxial compression occurs by a combined longitudinal/transverse shear and produces the highest dilatancy. An increase in the hydrostatic pressure level diminishes limiting values of shear strains and suppresses the dilatancy effect. A maximum of dilatancy coincides with a maximum of fresh surface area formed during the fracture of the rock. The generalized cleavage of rocks becomes energetically disadvantageous in a true triaxial compressive stress field. Some sandstone becomes more brittle under true triaxial compression (σ2 ≠ 0) at low values of the minimal stress component (σ3) due to high initial porosity and dilatancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexeev AD, Revva VN, Ryazantsev NA (1989) Razrusheniye gornykh porod v usloviyah obyemnogo neravnokomponentnogo szhatiya. Naukova dumka, Kiev, Ukraine

    Google Scholar 

  • Alexeev AD, Revva VN, Alyshev NA, Zhitlyonok DM (2004) True triaxial loading apparatus and its application to coal outburst prediction. Int J Coal Geol 58: 245–250

    Article  CAS  Google Scholar 

  • Al-Harthy SS, Jing XD, Marsden JR (1999) Petrophysical properties of reservoir rocks under true triaxial stress. Proc Lond Petrophys Soc 7: 5–7

    Google Scholar 

  • Bieniawski ZT (1971) Deformational behavior of fractured rock under multiaxial compression. In: Te’eni M (eds) Structure, solid mechanics and engineering design. Part 1. Wiley-Interscience, London, pp 589–598

    Google Scholar 

  • Bridgeman PW (1947) The effect of hydrostatic pressure on the fracture of brittle substances. J Appl Phys 18: 246–258

    Article  Google Scholar 

  • Cazacu O, Cristescu ND (1999) A paraboloid failure surface for transversely isotropic materials. Mech Mater 31: 381–393

    Article  Google Scholar 

  • Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39: 695–729

    Article  Google Scholar 

  • Haimson BC (1978) The hydrofracturing stress measurement technique-method and recent field results. Int J Rock Mech Min Sci 15: 167–78

    Article  Google Scholar 

  • Haimson B (2006) True triaxial stresses and the brittle fracture of rock. Pure Appl Geophys 163: 1101–1130

    Article  Google Scholar 

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci 37: 285–296

    Article  Google Scholar 

  • Handin J, Heard HC, Magouirk JN (1967) Effect of the intermediate principal stress on the failure of limestone, dolomite, and glass at different temperature and strain rate. J Geophys Res 72: 611–640

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div ASCE 106(GT9): 1013–1035

    Google Scholar 

  • Hoek E, Franklin JA (1968) A simple triaxial cell for field and laboratory testing of rock. Trans Inst Min Metall 77: A22–A26

    Google Scholar 

  • Ibsen LB, Praastrup U (2002) The Danish rigid boundary true triaxial apparatus for soil testing. Geotech Test J 25: 1–12

    Google Scholar 

  • Kapustyanskii SM, Nikolaevskii VN (1984) Quantitative formulation of the elastic-plastic dilatancy model with sandstones as example. Izv AN SSSR Ser Mech tverdogo tela 4: 113–123

    Google Scholar 

  • Kapustyanskii SM, Nikolaevskii VN (1985) Parameters of an elastoplastic dilatation model for earth materials. J Appl Mech Tech Phys 26: 893–899

    Article  Google Scholar 

  • Konchakova NA (2005) Study of strain field features in the plastic range of L.Galin’s problem. Vestnik VGU Ser Fiz Mat 1: 174–178

    Google Scholar 

  • Kwaśniewski M, Takahashi M, Li X (2003) Volume changes in sandstone under true triaxial compression conditions. ISRM 2003–Technology roadmap for rock mechanics. South African Institute of Mining and Metallurgy, pp 683–688

  • Lode W (1926) Versuche über den Einfluss mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Z Phys 36: 913–939

    Article  CAS  Google Scholar 

  • McGarr A, Gay NC (1978) State of stress in the earth’s crust. Ann Rev Earth Planet Sci 6: 405–436

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76: 1255–1269

    Article  Google Scholar 

  • Murrell SAF (1963) A criterion for brittle fracture of rocks and concrete under triaxial stress, and the effect of pore pressure on the criterion. In: Fairhurst C (ed) Proceedings of 5th Symposium on Rock Mech, University of Minnesota, Minneapolis, MN, pp 563–577

  • Murrell SAF (1965) The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys J Int 10: 231–281

    Article  Google Scholar 

  • Oikawa Y, Yamaguchi T (2000) Stress measurement using rock core in an HDR field. In: Proceedings of World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28-June 10, 2000. pp 3819–3822

  • Oku H, Haimson D, Song S-R (2006) True triaxial strength and deformability of the siltstone overlying the Chelungpu-fault (Chi-Chi earthquake); Taiwan. Fall Meeting 2006. Abstract #T21D-0450. American Geophysical Union

  • Rebetskiy YuL, Gushchenko OI (1996) Equations of state and evolution of deformation anisotropy of layered massifs in fold formation: mathematical modeling. Phys Solid Earth 31: 648–664

    Google Scholar 

  • Smart BDG, Somerville JM, Crawford BR (1999) A rock test cell with true triaxial capability. Geotech Test J 17: 157–176

    Google Scholar 

  • Stavrogin AI, Protosenya AG (1979) Plastichnost’ gornykh porod. Nedra, Moskva, Russia

    Google Scholar 

  • Streltsov VA, Akimov GYa, Prokhorov IYu (1983) Fracture of crystalline solids under hydrostatic pressure. Fiz tekh vysokih davlenii 12: 60–87

    Google Scholar 

  • Takahashi M, Koide H, Kinoshita S (1983) Characteristics of strength in sedimentary rocks under true triaxial compressional stress state and the increase of brittleness on the intermediate stress. J Jpn Soc Eng Geol 24: 150–157

    Google Scholar 

  • Taylor G, Geoffrey I, Quinney H (1931) The plastic distortion of metals. Philos Trans Roy Soc Lond A230: 323–362

    CAS  Google Scholar 

  • Wawersik WR, Carlson LW, Holcomb DJ, Williams RJ (1997) New method for true-triaxial rock testing. Int J Rock Mech Min Sci 34: 330.e1–330.e14

    Article  Google Scholar 

  • Wiebols GA, Cook NGW (1968) An energy criterion for the strength of rock in polyaxial compression. Int J Rock Mech Min Sci 5: 529–549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Alexeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeev, A.D., Revva, V.N., Bachurin, L.L. et al. The effect of stress state factor on fracture of sandstones under true triaxial loading. Int J Fract 149, 1–10 (2008). https://doi.org/10.1007/s10704-008-9214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9214-6

Keywords

Navigation