Skip to main content
Log in

Discrete 3D model as complimentary numerical testing for anisotropic damage

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

It is proposed to use a discrete particle model as a complimentary “numerical testing machine” to identify the hydrostatic elasticity-damage coupling and the corresponding sensitivity to hydrostatic stresses parameter. Experimental tri-axial tensile testing is difficult to perform on concrete material, and numerical testing proves then its efficiency. The discrete model used for this purpose is based on a Voronoi assembly that naturally takes into account heterogeneity. Tri-tension tests on a cube specimen, based on a damage growth control, are presented. A successful identification of the hydrostatic sensitivity function of a phenomenological anisotropic damage model is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolander JE, Saito S (1998) Fracture analysis using spring networks with random geometry. Eng Fract Mech 61: 569–591

    Article  Google Scholar 

  • Chaboche JL (1978) Description thermodynamique et phénoménologique de la visco-plasticité cyclique avec endommagement. Ph.D. thesis, Université Paris 6

  • Chow CL, Wang J (1987) An anisotropic theory for continuum damage mechanics. Int J Fract 33: 3–16

    Article  Google Scholar 

  • Cordebois JP, Sidoroff JP (1982) Endommagement anisotrope en élasticité et plasticité. J.M.T.A., Numéro spécial, pp 45–60

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29: 47–65

    Article  Google Scholar 

  • D’Addetta GA (2004) Discrete models for cohesive frictional materials. Ph.D. thesis, Stuttgart University

  • D’Addetta GA, Kun F, Ramm E (2002) On the application of a discrete model to the fracture process of cohesive granular materials. Granul Matter 4: 77–90

    Article  Google Scholar 

  • Delaplace A, Ibrahimbegovic A (2006) Performance of time-stepping schemes for discrete models in fracture dynamic analysis. Int J Numer Meth Eng 65: 1527–1544

    Article  Google Scholar 

  • Delaplace A, Roux S, Pijaudier-cabot G (1999) Failure and scaling properties of a softening interface connected to an elastic block. Int J Fract 95: 159–174

    Article  Google Scholar 

  • Desmorat R (2004) Modèle d’endommagement anisotrope avec forte dissymétrie traction/compression. In: 5ème journées du Regroupement Francophone pour la Recherche et la Formation sur le Béton (RF2B), Liège, Belgium, 5–6 July

  • Desmorat R (2006) Positivity of intrinsic dissipation of a class of non standard anisotropic damage models. C.R. Mécanique 334: 587–592

    Article  CAS  Google Scholar 

  • Desmorat R, Gatuingt F, Ragueneau F (2007) Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. Eng Fract Mech 74: 1539–1560

    Article  Google Scholar 

  • Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A—Solid 17: 439–60

    Article  Google Scholar 

  • Herrmann HJ, Roux S (1990) Statistical models for the fracture of disordered media. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Ju J (1989) On energy-based coupled elasto-plastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25: 803–833

    Article  Google Scholar 

  • Kun F, Herrmann H (1996) A study of fragmentation processes using a discrete element method. Comp Meth Appl Mech Eng 7: 3–18

    Article  Google Scholar 

  • Ladevèze P (1983) On an anisotropic damage theory. In: Boehler JP (ed) Proc. CNRS Int. Coll. 351 Villars-de-Lans, Failure criteria of structured media, 1993, pp 355–363

  • Leckie FA, Onat ET (1981) Tensorial nature of damage measuring internal variables. In: Hult J, Lemaitre J(eds) Chapt. Physical non-linearities in structural analysis. Springer, Berlin, pp 140–155

    Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer

  • Lemaitre J, Desmorat R, Sauzay M (2000) Anisotropic damage law of evolution. Eur J Mech A—Solid 19: 187–208

    Article  Google Scholar 

  • Linde P, Schulz A, Rust W (2006) Influence of modelling and solution methods on the FE-simulation of the post- buckling behaviour of stiffened aircraft fuselage panels. Compos Struct 73: 229–236

    Article  Google Scholar 

  • Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Ph.D. thesis, Thèse d’Etat Université Paris 6

  • Mazars J, Berthaud Y, Ramtani S (1990) The unilateral behavior of damage concrete. Eng Fract Mech 35: 629–635

    Article  Google Scholar 

  • Moukarzel C, Herrmann HJ (1992) A vectorizable random lattice. J Stat Phys 68: 911–923

    Article  Google Scholar 

  • Murakami S (1988) Mechanical modeling of material damage. J App Mech 55: 280–286

    Article  Google Scholar 

  • Papa E, Taliercio A (1996) Anisotropic damage model for the multi-axial static and fatigue behaviour of plain concrete. Eng Fract Mech 55: 163–179

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8): 1329–1364

    Article  Google Scholar 

  • Reese S (2006) Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large elastoplastic deformation. Int J Solids Struct 140: 951–980

    Google Scholar 

  • Rots JG, Invernizzi S, Belletti B (2006) Saw-tooth softening/stiffening—a stable computational procedure for RC structures. Comput Concrete 3: 213–233

    Google Scholar 

  • Schlangen E, Garboczi EJ (1997) Fracture simulations of concrete using lattice models: computational aspects. Eng Fract Mech 57(2/3): 319–332

    Article  Google Scholar 

  • Van Mier JGM, Van Vliet MRA (2003) Influence of microstructure of concrete on size/scale effects in tensile fracture. Eng Fract Mech 70: 2281–2306

    Article  Google Scholar 

  • Van Mier JGM, Van Vliet MRA, Wang TK (2002) Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech Mater 34: 705–724

    Article  Google Scholar 

  • Wang J, Crouch SL, Mogilevskaya SG (2006) Numerical modeling of the elastic behavior of fiber-reinforced composites with inhomogeneous interphases. Compos Sci Technol 66: 1–18

    Article  CAS  Google Scholar 

  • Yip M, Li Z, Liao B-S, Bolander J (2006) Irregular lattice models of fracture of multiphase particulate materials. Int J Fract 140: 113–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Delaplace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaplace, A., Desmorat, R. Discrete 3D model as complimentary numerical testing for anisotropic damage. Int J Fract 148, 115–128 (2007). https://doi.org/10.1007/s10704-008-9183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-008-9183-9

Keywords

Navigation