Skip to main content
Log in

The Nature of Stress and Electric-displacement Concentrations around a Strongly Oblate Cavity in a Transversely Isotropic Piezoelectric Material

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper we explore the nature of stress and electric-displacement concentrations around a strongly oblate spheroidal cavity that possesses a finite dielectric permittivity. We start out from Eshelby’s general inclusion method but give specific account on the important class of piezoelectric ceramics whose structure is represented by the 6 mm symmetry. It is found that under axial electromechanical loading these concentrations are governed by a dimensionless parameter η, defined as (k0/k33)/(c/a), that involves the ratio of the dielectric permittivity of the medium inside the cavity k0, to that of the transversely isotropic piezoelectric ceramic k33, and the aspect ratio of the cavity c/a. When the medium inside the cavity is an impermeable one it is found that both the axial stress and axial electric displacement can have direct contribution to the concentration factors, but when the medium is a conducting one only the applied stress has an effect on it. Our analysis further indicates that it is the parameter η – not k0/k33 or c/a alone – that plays the key role here; when η< 0.01, the cavity can be effectively treated as an impermeable one, while for η> 100 it can be treated as a conducting case. Numerical results for several PZT ceramics suggest that under a pure tensile stress the ceramic tends to fracture on the equatorial plane, but under a pure electrostatic load it tends to develop radial cracks normal to the edge of the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.M. Barnett J. Lothe (1975) ArticleTitleDislocations and line charges in anisotropic piezoelectric insulators Physica Status Solidi B67 105–111

    Google Scholar 

  • T. Chen (1993) ArticleTitleGreen’s function and the non-uniform transformation problem in a piezoelectric medium Mechanics Research Communications 20 271–278 Occurrence Handle1993mrsa.conf.....C Occurrence Handle0773.73077 Occurrence Handle1214967

    ADS  MATH  MathSciNet  Google Scholar 

  • C. Dascalu D. Homentcovschi (2002) ArticleTitleAn intermediate crack model for flaws in piezoelectric solids Acta Mechanica 154 85–100 Occurrence Handle10.1007/BF01170700

    Article  Google Scholar 

  • Deeg W.F. (1980). The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids. Ph.D. Dissertation, Stanford University.

  • M.L. Dunn M. Taya (1993) ArticleTitleAn analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities Proceedings of the Royal Society of London A443 265–287 Occurrence Handle1993RSPSA.443..265D

    ADS  Google Scholar 

  • M.L. Dunn (1994a) ArticleTitleThe effect of crack face boundary conditions on the fracture mechanics of piezoelectric solid Engineering Fracture Mechanics 48 25–39 Occurrence Handle10.1016/0013-7944(94)90140-6 Occurrence Handle1994EnFM...48...25D

    Article  ADS  Google Scholar 

  • M.L. Dunn (1994b) ArticleTitleElectroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems International Journal of Engineering Science 32 119–131 Occurrence Handle10.1016/0020-7225(94)90154-6 Occurrence Handle94j:78008

    Article  MathSciNet  Google Scholar 

  • M.L. Duun H.A. Wienecke (1997) ArticleTitleInclusions and inhomogeneity in transversely isotropic piezoelectric solids International Journal of Solids and Structures 34 3571–3582

    Google Scholar 

  • J.D. Eshelby (1957) ArticleTitleThe determination of the elastic field of an ellipsoidal inclusion, and related problems Proceedings of the Royal Society of London A241 376–396 Occurrence Handle1957RSPSA.241..376E Occurrence Handle19,338d

    ADS  MathSciNet  Google Scholar 

  • T.H. Hao Z.Y. Shen (1994) ArticleTitleA new electric boundary condition of electric fracture mechanics and its applicaiton Engineering Fracture Mechanics 47 793–802 Occurrence Handle10.1016/0013-7944(94)90243-7

    Article  Google Scholar 

  • J.H. Huang J.S. Yu (1994) ArticleTitleElectroelastic Eshelby tensor for an ellipsoidal piezoelectric inclusion Composite Engineering 4 1169–1182

    Google Scholar 

  • T. Ikeda (1996) Fundamentals of Piezoelectricity Oxford University Press Oxford

    Google Scholar 

  • S.G. Lekhnitskii (1963) Theory of Elasticity of an Anisotropic Elastic Body Hoden-Day San Francisco

    Google Scholar 

  • C.Y. Li G.J. Weng (2002) ArticleTitleAnti-plane crack problem in functionally graded piezoelectric materials Journal of Applied Mechanics 69 481–488 Occurrence Handle1991JAP....69..481L

    ADS  Google Scholar 

  • C.Y. Li G.J. Weng (2002) ArticleTitleYoffe-type moving crack in a functionally graded piezoelectric material Proceedings of the Royal Society of London A458 381–399 Occurrence Handle2002RSPSA.458..381L Occurrence Handle2002m:74046

    ADS  MathSciNet  Google Scholar 

  • R.M. McMeeking (1989) ArticleTitleElectrostrictive stress near crack-like flaws Journal of Applied Mathematics and Physics (ZAMP) 40 615–627 Occurrence Handle10.1007/BF00945867 Occurrence Handle0685.73050

    Article  MATH  Google Scholar 

  • N.I. Muskhelishvili (1953) Some Basic Problems of the Mathematical Theory of Elasticity Noordhoff Groningen

    Google Scholar 

  • J.F. Nye (1979) Physical Properties of Crystals Oxford University Press Oxford

    Google Scholar 

  • Y.E. Pak (1990) ArticleTitleCrack extension force in a piezoelectric material Journal of Applied Mechanics 57 647–653 Occurrence Handle0724.73191

    MATH  Google Scholar 

  • Y.E. Pak (1992) ArticleTitleLinear electro-elastic fracture mechanics of piezoelectric materials International Journal of Fracture 54 79–100

    Google Scholar 

  • S.B. Park C.T. Sun (1995) ArticleTitleEffect of electric field on fracture of piezoelectric ceramics International Journal of Fracture 70 203–216

    Google Scholar 

  • V.Z. Parton (1976) ArticleTitleFracture mechanics of piezoelectric materials Acta Astronautica 3 671–683 Occurrence Handle10.1016/0094-5765(76)90105-3 Occurrence Handle0351.73115

    Article  MATH  Google Scholar 

  • V.Z. Parton B.A. Kudryavtsev (1988) Electromagnetoelasticity Gordon and Breach New York

    Google Scholar 

  • A.N. Stroh (1958) ArticleTitleDislocations and cracks in anisotropic elasticity Philosophical Magazine 3 625–646 Occurrence Handle0080.23505 Occurrence Handle20 #1469

    MATH  MathSciNet  Google Scholar 

  • A.N. Stroh (1962) ArticleTitleSteady state problems in anisotropic elasticity Journal of Mathematical Physics 41 77–103 Occurrence Handle0112.16804 Occurrence Handle25 #2740

    MATH  MathSciNet  Google Scholar 

  • W.Y. Tian R.K.N.D. Rajapakse (2005) ArticleTitleFracture analysis of magnetoelectroelastic solids using path independent integrals International Journal of Fracture 131 311–335 Occurrence Handle10.1007/s10704-004-5103-9

    Article  Google Scholar 

  • P.J. Withers (1989) ArticleTitleThe determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials Philosophical Magazine A59 759–781

    Google Scholar 

  • T.-Y. Zhang M.-H. Zhao P. Tong (2001) ArticleTitleFracture of piezoelectric ceramics Advances in Applied Mechanics 38 147–289

    Google Scholar 

  • X. Zeng R.K.N.D. Rajapakse (2003) ArticleTitleEshelby tensor for piezoelectric inclusion and application to modeling of domain switching and evolution Acta Materialia 51 4121–4134 Occurrence Handle10.1016/S1359-6454(03)00231-3

    Article  Google Scholar 

  • X. Zeng R.K.N.D. Rajapakse (2004) ArticleTitleEffect of remanent field on an elliptical flaw and a crack in a poled piezoelectric ceramic Computational Materials Science 30 433–440 Occurrence Handle10.1016/j.commatsci.2004.02.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CR., Weng, G.J. The Nature of Stress and Electric-displacement Concentrations around a Strongly Oblate Cavity in a Transversely Isotropic Piezoelectric Material. Int J Fract 134, 319–337 (2005). https://doi.org/10.1007/s10704-005-1973-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-005-1973-8

Keywords

Navigation