Skip to main content
Log in

Bergmann-Thomson Energy of a Charged Rotating Black Hole

  • Published:
Foundations of Physics Letters

Abstract

We obtain the energy distribution associated with a charged rotating (Kerr-Newman) black hole in Bergmann-Thomson formulation. We find that the energy-momentum definitions prescribed by Einstein, Landau-Lifshitz, Papapetrou, Weinberg, and Bergmann-Thomson give the same and acceptable result and also support the Cooperstock hypothesis for energy localization in general relativity. The repulsive effect due to the electric charge and rotation parameters of the metric is also reflected from the energy distribution expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. R. Penrose, Proc. Roy. Soc. London A 381, 53 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  2. 2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, 1987), p. 280. A. Papapetrou, Proceedings of the Royal Irish Academy A52, 11 (1948). S. Weinberg, Gravitation and Cosmology: Principles and Applications of General Theory of Relativity (Wiley, New York, 1972), p. 165. C. Møller, Ann. of Phys. (NY) 4, 347 (1958).

    Google Scholar 

  3. 3. P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. 4. S. Chandrasekhar and V. Ferrari, Proc. R. Soc. London A 435, 645 (1991).

    ADS  MathSciNet  MATH  Google Scholar 

  5. 5. G. Bergqvist, Class. Quantum Gravit. 9, 1753 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. 6. S. S. Xulu, Int. J. Mod. Phys.A 15, 2979 (2000); 15, 4849 (2000); Int. J. Theor. Phys. 39, 1153 (2000); Mod. Phys. Lett. A 15, 1511 (2000). K. S. Virbhadra, Pramana-J. Phys. 38, 31 (1992); 44, 317 (1995); 45, 215 (1995); Int. J. Mod. Phys. A 12, 4831 (1997). N. Rosen and K. S. Virbhadra, Gen. Relativ. Gravit. 25, 429 (1993). A. Chamorro and K. S. Virbhadra, Pramana-J. Phys. 45, 181 (1995); Int. J. Mod. Phys. D 5, 251 (1996). K. S. Virbhadra and J. C. Parikh, Phys. Lett. B 317, 312 (1993); Phys. Lett. B 331, 302 (1994).

    ADS  MathSciNet  MATH  Google Scholar 

  7. 7. I. Radinschi, Mod. Phys. Lett.A 15, 2171 (2000); 16, 673 (2001); Nuovo Cim. B 115, 501 (2000). I.-C. Yang and I. Radinschi, Mod. Phys. Lett. A 17, 1159 (2002); Chin. J. Phys. 42, 40 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. 8. T. Bringley, Mod. Phys. Lett. A 17, 157 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. 9. K. S. Virbhadra, Phys. Rev. D 41, 1086 (1990); Phys. Rev. D 42, 1066 (1990); Phys. Rev. D 42, 2919 (1990); Phys. Rev. D 60, 104041 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. 10. F. I. Cooperstock and S. A. Richardson, in Proc. 4th Canadian Conf. on General Relativity and Relativistic Astrophysics (World Scientific, Singapore, 1991).

    Google Scholar 

  11. 11. J. M. Aguirregabiria, A. Chamorro, and K. S. Virbhadra, Gen. Relativ. Gravit. 28, 1393 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. 12. E. C. Vagenas, Int. J. Mod. Phys. D 14, 573 (2005); Mod. Phys. Lett. A 19, 213 (2004); Int. J. Mod. Phys. A 18, 5949 (2003); Int. J. Mod. Phys. A 18, 5781 (2003). Th. Grammenos, Mod. Phys. Lett. A 20, 1741 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. 13. M. Sharif, Int. J. Mod. Phys. A 18, 4361 (2003); Erratum 19, 1495 (2004); Nuovo Cim. B 19, 463 (2004); Int. J. Mod. Phys. D 13, 1019 (2004). M. Sharif and Tasnim Fatima, Int. J. Mod. Phys. A 20, 4309 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. 14. R. M. Gad, Mod. Phys. Lett. A 19, 1847 (2004); Astrophys. Space Sci. 293, 453 (2004); 295, 451 (2005); 295, 459 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. 15. T. Vargas, Gen. Rel. Grav. 36, 1255 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. 16. O. Patashnick, Int. J. Mod. Phys. D 14, 1607 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. 17. M. Salti, Astrophys.Space Sci. 299, 159 (2005); Nuovo Cim. B 120, 53 (2005); Mod. Phys. Lett. A 20, 2175 (2005). O. Aydogdu and M. Salti, Astrophys. Space Sci. 299, 227 (2005). M. Salti and A. Havare, Int. J. Mod. Phys. A 20, 2169 (2005).

    Article  ADS  MATH  Google Scholar 

  18. 18. P. Halpern, “Black plane solutions and the Einstein energy-momentum complex,” gr-qc/0505053.

  19. 19. C. C. Chang, J. M. Nester, and C. Chen, Phys. Rev. Lett. 83, 1897 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. 20. F. I. Cooperstock, Mod. Phys Lett. A 14, 1531 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  21. 21. F. I. Cooperstock, Ann. Phys. 282, 115 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. 22. F. I. Cooperstock, V. Faraoni, and F. I. Cooperstock, Astrophys. J. 587, 483 (2003).

    Article  ADS  Google Scholar 

  23. 23. F. I. Cooperstock and S. Tieu, Found. Phys. 33, 1033 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xulu, S. Bergmann-Thomson Energy of a Charged Rotating Black Hole. Found Phys Lett 19, 603–609 (2006). https://doi.org/10.1007/s10702-006-1013-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-006-1013-6

Key words:

Navigation