Skip to main content
Log in

A Stochastic Mechanics Based on Bohm‧s Theory and its Connection with Quantum Mechanics

  • Original Article
  • Published:
Foundations of Physics Letters

Abstract

We construct a stochastic mechanics by replacing Bohm‧s first-order ordinary differential equation of motion with a stochastic differential equation where the stochastic process is defined by the set of Bohmian momentum time histories from an ensemble of particles. We show that, if the stochastic process is a purely random process with n-th order joint probability density in the form of products of delta functions, then the stochastic mechanics is equivalent to quantum mechanics in the sense that the former yields the same position probability density as the latter. However, for a particular non-purely random process, we show that the stochastic mechanics is not equivalent to quantum mechanics. Whether the equivalence between the stochastic mechanics and quantum mechanics holds for all purely random processes but breaks down for all non-purely random processes remains an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. D. Kershaw, Phys. Rev. 136, B1850 (1964).

    Article  MathSciNet  Google Scholar 

  2. 2. E. Nelson, Phys. Rev. 150, 1079 (1966).

    Article  ADS  Google Scholar 

  3. 3. L. de. la. Pena-Auerbach, Phys. Lett. A 24, 603 (1967).

    Article  ADS  Google Scholar 

  4. 4. L. de. la. Pena-Auerbach, Phys. Lett. A 27, 594 (1968).

    Article  ADS  Google Scholar 

  5. 5. L. de. la. Pena-Auerbach, J. Math. Phys. 10, 1620 (1969).

    Article  MATH  ADS  Google Scholar 

  6. 6. L. Bess, Prog. Theor. Phys. 49, 1889 (1973).

    Article  ADS  Google Scholar 

  7. 7. F. Guerra, Phys. Rep. 77, 263 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  8. 8. M. Baublitz Jr., Prog. Theor. Phys. 80, 232 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  9. 9. H. Okamoto, J. Phys. A: Math, Gen. 23, 5535 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  10. 10. B. C. Levy and A. J. Krener, J. Math. Phys. 37, 796 (1996).

    Article  MathSciNet  Google Scholar 

  11. 11. L. S. F. Olavo, Physica A 262, 197 (1999).

    Article  MathSciNet  Google Scholar 

  12. 12. L. S. F. Olavo, Physica A 271, 260 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. 13. L. S. F. Olavo, A. F. Bkuzis, and R. Q. Amilcar, Physica A 271, 303 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  14. 14. L. S. F. Olavo, Phys. Rev. A 61, 052109 (2000).

    Article  ADS  Google Scholar 

  15. 15. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  16. 16. L. F. Kracklauer, Phys. Rev. D 10, 1358 (1974).

    Article  ADS  Google Scholar 

  17. 17. E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985).

    MATH  Google Scholar 

  18. 18. E. Nelson, Stochastic Processes in Classical and Quantum Systems (Lecture Notes in Physics 262) (Springer, Berlin, 1986), pp. 438–469.

    Google Scholar 

  19. 19. J. G. Gilson, Proc. Cambridge Phil. Soc. 64, 1061 (1968).

    Article  Google Scholar 

  20. 20. T. C. Wallstrom, Found. Phys. Lett. 2, 113 (1989).

    Article  MathSciNet  Google Scholar 

  21. 21. N. Saito and M. Namiki, Prog. Theor. Phys. 16, 71 (1956).

    Article  ADS  MATH  Google Scholar 

  22. 22. A. Klein, Phys. Rep. 77, 329 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  23. 23. L. de la Pena and A. M. Cetto, Found. Phys. 12, 1017 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  24. 24. A. Cassa, J. Math. Phys. 42, 5143 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. 25. B. L. Lan, Phys. Rev. A 63, 042105 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  26. 26. B. L. Lan, Phys. Rev. A 65, 032117 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  27. 27. W. T. Coffey Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering (World Scientific, Singapore, 1996).

    MATH  Google Scholar 

  28. 28. D. Bohm, Phys. Rev. 85, 166 (1952).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. 29. D. Bohm, Phys. Rev. 85, 180 (1952).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. 30. D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).

    Google Scholar 

  31. 31. L. E. Reichl. A Modern Course in Statistical Physics, 2nd edn. (Wiley, New York, 1998).

    MATH  Google Scholar 

  32. 32. P. R. Holland, The Quantum Theory of Motion (University Press, Cambridge, 1993).

    Google Scholar 

  33. 33. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Edition (Academic, New York, 1992).

    Google Scholar 

  34. 34. Y. O. Tan, Equivalence of Stochastic Mechanics with Bohmian Mechanics (Master Thesis, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon Leong Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, B., Tan, Y. A Stochastic Mechanics Based on Bohm‧s Theory and its Connection with Quantum Mechanics. Found Phys Lett 19, 143–155 (2006). https://doi.org/10.1007/s10702-006-0372-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-006-0372-3

Key words:

Navigation