Skip to main content
Log in

An Epistemic Analysis of Time Phenomenon

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this work we present an epistemic analysis of time phenomenon using the mathematical machinery of information theory and modular theory. By adopting limited commitment to the ontology of time evolution, and instead by mainly relying on the information that is in principle accessible to the observer, we find that the most primary aspect of the temporal experience, the perceived distinctiveness across the states of the world, emerges as a purely epistemic function. By analyzing the mathematical properties of this epistemic function, we interpret it to be in principle insensitive to any ontic state of the world, which leads to the conclusion that the observer is subject to temporal experience irrespective of whether the underlying state of the world is dynamical or invariant. On the ground of the presented analysis, we also provide a solution to the conceptual challenge of non-equilibrium phenomena that faces the thermal time hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not Applicable.

Notes

  1. The reason behind a logarithmic definition of information content of an even is the additivity of the amount of surprise associated with the occurrence of two independent events x and y: \(-\log p_{xy} = -\log p_x -\log p_y\).

  2. The interaction Hamiltonian is bounded.

  3. A state \(\Psi \) is called separating for \({\mathcal {R}}_{{\mathcal {O}}}\) if \(A\vert \Psi \rangle \ne 0\) unless A=0 for all \(A\in {\mathcal {R}}_{{\mathcal {O}}}\).

  4. \(\log \Delta \) is called the modular Hamiltonian.

  5. Note that the relative entropy \(H_{\Psi ;\Phi }\) is a function of the local algebra \({\mathcal {R}}_{{\mathcal {O}}}\), as the modular operator is generated by both the global state and the local algebra.

References

  1. Brough, J.B.: Husserl and the deconstruction of time. Rev. Metaphys. 46, 503–536 (1993)

    Google Scholar 

  2. Sokolowski, R.: Introduction to Phenomenology. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Kelly, M.R.: Phenomenology and the Problem of Time. Palgrave Macmillan, London (2016)

    Book  Google Scholar 

  4. Wittgenstein, L.: On Certainty. Harper and Row, New York (1969)

    Google Scholar 

  5. Williams, M.: Unnatural Doubts: Epistemological Realism and the Basis of Skepticism. Princeton University Press, Princeton (1996)

    Google Scholar 

  6. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992)

    Book  Google Scholar 

  7. Diximier, J.: Von Neumann Algebras. North Holland, Amsterdam (1981)

    Google Scholar 

  8. Connes, A.: Noncommutative Geometry. Academic Press, Boston (1994)

    MATH  Google Scholar 

  9. Witten, E.: Entanglement properties of quantum field theory. Rev. Mod. Phys. 90, 045003 (2018)

    Article  ADS  Google Scholar 

  10. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Springer, Berlin (1970)

    Book  Google Scholar 

  11. Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Class. Quantum Grav. 11(12), 2899–2917 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Swanson, N.: Can quantum thermodynamics save time? Philos. Sci. 88, 281–302 (2021)

    Article  MathSciNet  Google Scholar 

  13. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1964)

    MATH  Google Scholar 

  14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  15. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Flack, J.C.: Coarse-graining as a downward causation mechanism. Philos. Trans. R. Soc. A. 375, 20160338 (2017)

    Article  ADS  Google Scholar 

  17. Rédei, M., Summers, S.J.: Quantum probability theory. Stud. Hist. Philos. Mod. Phys. 38, 390–417 (2007)

    Article  MathSciNet  Google Scholar 

  18. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)

    Article  MathSciNet  Google Scholar 

  19. Murray, F.J., von Neumann, J.: On rings of operators \(\rm {II}\). Ann. Math. 41, 208–248 (1937)

    MathSciNet  MATH  Google Scholar 

  20. Von Neumann, J.: On rings of operators \(\rm {III}\). Ann. Math. 41, 94–161 (1940)

    Article  MathSciNet  Google Scholar 

  21. Murray, F.J., von Neumann, J.: On rings of operators \(\rm {IV}\). Ann. Math. 44, 716–808 (1943)

    Article  MathSciNet  Google Scholar 

  22. Buchholz, D., Yngvason, J.: There are no causality problems for fermi’s two-atom system. Phys. Rev. Lett. 73, 613–616 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fermi, E.: Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932)

    Article  ADS  Google Scholar 

  24. Schlieder, S.: Some remarks about the localization of states in quantum field theory. Commun. Math. Phys. 1, 265–280 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  25. Clifton, R., Halvorson, H.: Entanglement and open systems in algebraic quantum field theory. Stud. Hist. Philos. Mod. Phys. 32, 1–31 (2001)

    Article  MathSciNet  Google Scholar 

  26. Nishioka, T.: Entanglement entropy: holography and renormalizatio group. Rev. Mod. Phys. 90, 035007 (2018)

    Article  ADS  Google Scholar 

  27. Araki, H.: Relative entropy of states of von Neumann algebras. Publ. Res. Inst. Math. Sci. Kyoto 11, 809–833 (1976)

    Article  MathSciNet  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  29. Connes, A., Størmer, E.: Entropy for automorphisms of \(\rm {II}_1\) von Neumann algebras. Acta Math. 134(1), 289–306 (1975)

    Article  MathSciNet  Google Scholar 

  30. Schumacher, B., Westmoreland, M.D.: Quantum privacy and quantum coherence. Phys. Rev. Lett. 80, 5695–5697 (1997)

    Article  ADS  Google Scholar 

  31. Jones, V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bisognano, J.J., Wichmann, E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hollands, S., Longo, R.: Non-equilibrium thermodynamics and conformal field theory. Commun. Math. Phys. 357, 43–60 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rovelli, C.: The statistical state of the universe. Class. Quantum Grav. 10, 1567 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  35. Longo, R.: The joint modular structure of an inclusion of von Neumann algebras. Contemp. Math. 62, 529–538 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Miklós Rédei, Roberto Longo, Klaus Fredenhagen and Carlo Rovelli for insightful discussions.

Funding

This research has received funding and support from the European Union’s Horizon 2020 research and innovation programme under grant agreement n. 758145 and the project CHRONOS (PID2019-108762GB-I00) of the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhang Hadad Farshi or Silvia DeBianchi.

Ethics declarations

Conflict of interest

The authors do not have any relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshi, F.H., DeBianchi, S. An Epistemic Analysis of Time Phenomenon. Found Phys 52, 63 (2022). https://doi.org/10.1007/s10701-022-00583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00583-9

Keywords

Navigation