Skip to main content
Log in

Hamiltonian Structure of the Schrödinger Classical Dynamical System

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The connection between quantum mechanics and classical statistical mechanics has motivated in the past the representation of the Schrödinger quantum-wave equation in terms of “projections” onto the quantum configuration space of suitable phase-space asymptotic kinetic models. This feature has suggested the search of a possible exact super-dimensional classical dynamical system (CDS), denoted as Schrödinger CDS, which uniquely determines the time-evolution of the underlying quantum state describing a set of N like and mutually interacting quantum particles. In this paper the realization of the same CDS in terms of a coupled set of Hamiltonian systems is established. These are respectively associated with a quantum-hydrodynamic CDS advancing in time the quantum fluid velocity and a further one the RD-CDS, describing the relative dynamics with respect to the quantum fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact according ’t Hooft “Contrary to common belief, it is not difficult to construct deterministic (i.e., classical dynamical) models (for the Schroedinger equation) where stochastic behavior is correctly described... What is difficult, however, is to obtain a Hamiltonian that is bounded from below” (see Ref. [6]).

References

  1. Tessarotto, M., Ellero, M., Nicolini, P.: Inverse kinetic theory for quantum hydrodynamics equations. Phys. Rev. A75, 012105–012105-15 (2007). arXiv:quant-ph/0606091v1

  2. Tessarotto, M., Ellero, M., Nicolini, P.: IKT approach for quantum hydrodynamics equations. AIP Conf. Proc. 1084, 33–39 (2008). doi:10.1063/1.3076498

    Article  ADS  Google Scholar 

  3. Tessarotto, M., Cremaschini, C.: Generalized Lagrangian-path representation of non-relativistic quantum mechanics. Found. Phys. (2016). doi:10.1007/s10701-016-9989-7

  4. Cremaschini, C., Tessarotto, M.: Quantum theory of extended particle dynamics in the presence of EM radiation-reaction. Eur. Phys. J. Plus 130(1–21), 166 (2015)

    Article  MATH  Google Scholar 

  5. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. Leipzig 79, 361–376 (1926)

    Article  MATH  Google Scholar 

  6. ’t Hooft, G.: A mathematical theory for deterministic quantum mechanic. J. Phys. Conf. Ser. 67(1–15), 012015 (2007)

    Article  ADS  Google Scholar 

  7. Pesci, A., Goldstein, R., Uys, H.: Mapping of the classical kinetic balance equations onto the Schrödinger equation. Nonlinearity 18, 211–226 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Pesci, A., Goldstein, R., Uys, H.: Mapping of the classical kinetic balance equations onto the Pauli equation. Nonlinearity 18, 227–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Pesci, A., Goldstein, R., Uys, H.: Mapping of the relativistic kinetic balance equations onto the Klein-Gordon and second-order Dirac equation. Nonlinearity 18, 1295–1304 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kaniadakis, G.: Statistical origin of quantum mechanics. Physica A 307, 172–184 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Tessarotto, M., Ellero, M.: Unique representation of an inverse-kinetic theory for incompressible Newtonian fluids. AIP Conf. Proc. 762, 108–114 (2005). doi:10.1063/1.1941522

    Article  ADS  Google Scholar 

  12. Ellero, M., Tessarotto, M.: An inverse kinetic theory for the incompressible Navier-Stokes equations. Physica A 355, 233–250 (2005). doi:10.1016/j.physa.2005.03.021

    Article  ADS  MathSciNet  Google Scholar 

  13. Tessarotto, M., Ellero, M.: Unique representation of an inverse-kinetic theory for incompressible Newtonian fluids. Physica A 373, 142–152 (2007)

    Article  ADS  Google Scholar 

  14. Tessarotto, M., Cremaschini, C., Tessarotto, M.: Lagrangian dynamics of incompressible thermofluids. AIP Conf. Proc. 1084, 182–188 (2008)

    Article  ADS  MATH  Google Scholar 

  15. Tessarotto, M., Tessarotto, M.: Modelling of anthropogenic pollutant diffusion in the atmosphere and applications to civil protection monitoring. AIP Conf. Proc. 1084, 483–489 (2008)

    Article  ADS  Google Scholar 

  16. Tessarotto, M., Ellero, M., Aslan, N., Mond, M., Nicolini, P.: Exact pressure evolution equation for incompressible fluids. AIP Conf. Proc. 1084, 224–230 (2008)

    Article  ADS  Google Scholar 

  17. Tessarotto, M., Cremaschini, C., Tessarotto, M.: Phase-space Lagrangian dynamics of incompressible thermofluids. Physica A 388, 3737–3744 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Tessarotto, M.: IKT-approach to the MHD turbulence. Magnetohydrodyn. J. 45(2), 3–22 (2009)

    Google Scholar 

  19. Tessarotto, M., Asci, C., Cremaschini, C., Soranzo, S., Tironi, G.: Tracer-particle dynamics in MHD fluids. EPJ Plus 127(1–30), 36 (2012)

    ADS  Google Scholar 

  20. Tessarotto, M., Cremaschini, C.: The mathematical properties of the Navier-Stokes dynamical systems for incompressible Newtonian fluids. Physica A 392, 3962–3968 (2013). doi:10.1140/epjp/i2013-13084-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  22. Bracken, A.J., Doebner, H.-D., Wood, J.G.: Non-positivity of the wigner function and bounds on associated integrals. Phys. Rev. Lett 83, 3758–3761 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Cahill, K.E., Glauber, R.J.: Density operators and quasi-probability distributions. Phys. Rev. 177, 1882–1902 (1969)

    Article  ADS  Google Scholar 

  24. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955). Translation of Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932)

  25. Groenewold, H.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Risken, H., Vogel, K.: Far From Equilibrium Phase Transition. Lecture Notes in Physics, vol. 319. Springer, Berlin (1988)

    Google Scholar 

  27. Torres-Vega, G., Frederick, J.H.: Classical-quantum correspondence by means of probability densities. J. Chem. Phys. 93, 8862–8866 (1990). doi:10.1063/1.464085

    Article  ADS  MathSciNet  Google Scholar 

  28. Torres-Vega, G., Frederick, J.H.: A quantum mechanical representation in phase space. Chem. Phys. 98, 3103–3121 (1993)

    ADS  Google Scholar 

  29. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  30. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  31. Kershaw, D.: Phys. Rev. 136, B1850 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  32. Namsrai, K.: Non-local Quantum Field Theory and Stochastic Quantum Mechanics. Fundamental Theories of Physics. D. Reidel Publication Company, Dordrecht (1986)

    Book  MATH  Google Scholar 

  33. Blanchard, P., Compes, P., Zheng, W.: Mathematical and Physical Aspects of Statistical Mechanics. Lecture Notes in Physics, vol. 281. Springer, Berlin (1987)

    Google Scholar 

  34. Deotto, E., Ghirardi, G.C.: Bohmian mechanics revisited. Found. Phys. 28(1–30), 1 (1998). doi:10.1023/A:1018752202576

    Article  MathSciNet  Google Scholar 

  35. Bassi, A., Ghirardi, G.: Dynamics reduction models. Phys. Rep. 379, 257–426 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Banik, S.K., Bag, B.C., Ray, D.S.: Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions. arXiv:quant-ph/0203040 (2002)

  37. Olavo, L.S.F.: Foundations of quantum mechanics: the connection between QM and the central limit theorem. Physica A 262, 197–214 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  38. Olavo, L.S.F.: Foundations of quantum mechanics (II): equilibrium. Bohr-Sommerfeld rules and duality. Physica A 271, 260–302 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. Grabowski, P.E., Markmann, A., Morozov, I.V., Valuev, I.A., Fichtl, C.A., Richards, D.F., Batista, V.S., Graziani, F.R., Murillo, M.S.: Wave packet spreading and localization in electron-nuclear scattering. Phys. Rev. E 87(1–26), 063104 (2013)

    Article  ADS  Google Scholar 

  40. Graziani, F.R., Bauer, J.D., Murillo, M.S.: Kinetic theory molecular dynamics for hot, dense plasmas. Phys. Rev. E 90(1–9), 033104 (2014)

    Article  ADS  Google Scholar 

  41. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85, 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bohm, D., Suggested, A.: Interpretation of the quantum theory in terms of “Hidden‘’ variables. II. Phys. Rev. 85, 180–193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  43. Bohm, D.: Reply to a criticism of a causal re-interpretation of the quantum theory. Phys. Rev. 87, 389 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  45. Tessarotto, M., Cremaschini, C.: Global validity of the Master kinetic equation for hard-sphere systems. Eur. Phys. J. Plus 130(1–18), 169 (2015)

    Article  MATH  Google Scholar 

  46. Tessarotto, M., Cremaschini, C.: Ab initio construction of the velocity-difference 2-point PDF for incompressible Navier-Stokes fluids. Eur. Phys. J. Plus 128(1–12), 84 (2013). doi:10.1140/epjp/i2013-13084-2

    Article  Google Scholar 

  47. Wyatt, R.E.: Quantum wavepacket dynamics with trajectories: wavefunction synthesis along quantum paths. Chem. Phys. Lett. 313, 189–197 (1999)

    Article  ADS  Google Scholar 

  48. Wyatt, R.E., Lopreore, C.L., Parlant, G.: Electronic transitions with quantum trajectories I. J. Chem. Phys. 114, 5113–5116 (2001)

    Article  ADS  Google Scholar 

  49. Lopreore, C.L., Wyatt, R.E.: Electronic transitions with quantum trajectories II. J. Chem. Phys. 116, 1228–1238 (2002)

    Article  ADS  Google Scholar 

  50. Bush, J.W.N.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292 (2015)

    Article  ADS  Google Scholar 

  51. Wyatt, R.: Quantum Dynamics with Trajectories. Springer, Berlin (2005)

    MATH  Google Scholar 

  52. Poirier, B., Parlant, G.: Reconciling semiclassical and Bohmian mechanics. V. Wavepacket dynamics. J. Phys. Chem. A 111, 10400–10408 (2007)

    Article  Google Scholar 

  53. Tessarotto, M., Cremaschini, C., Tessarotto, M.: On the conditions of validity of the Boltzmann equation and Boltzmann H-theorem. Eur. Phys. J. Plus 128(1–20), 32 (2013)

    Article  MATH  Google Scholar 

  54. Tessarotto, M., Cremaschini, C.: Modified BBGKY hierarchy for the hard-sphere system. Eur. Phys. J. Plus 129(1–23), 157 (2014)

    Article  MATH  Google Scholar 

  55. Tessarotto, M., Cremaschini, C.: Axiomatic foundations of entropic theorems for hard-sphere systems. Eur. Phys. J. Plus 130(1–22), 91 (2015)

    Article  MATH  Google Scholar 

  56. Madelung, E.: Quantentheorie in hydrodynamischer form. Zeitschrift für Physik 40, 322–326 (1927)

    Article  ADS  MATH  Google Scholar 

  57. Janossy, L.: Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169, 79–89 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  58. Bocchieri, P., Loinger, A.: Nonexistence of the Aharonov-Bohm effect. Nuovo Cim. 47A, 475 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  59. Takabayasi, T.: Hydrodynamical formalism of quantum mechanics and Aharonov-Bohm effect. Prog. Theor. Phys. 69, 1323–1344 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Halpern, O.: A proposed re-interpretation of quantum mechanics. Phys. Rev. 87, 389–389 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Tsekov, R.: Bohmian mechanics versus Madelung quantum hydrodynamics. Ann. Univ. Sofia, Fac. Phys. Special Edition, 112–119 (2012). arXiv:0904.0723

  62. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Londres (1980)

    MATH  Google Scholar 

  63. Arnold, V.: Les Methodes Mathematiques de la Mechanique Classique. MIR, Moscow (1976)

    Google Scholar 

Download references

Acknowledgments

Work developed within the research project of the Albert Einstein Center for Gravitation and Astrophysics, Czech Science Foundation No. 14-37086G (M.T.). One of the authors (M.T.) acknowledges the hospitality of the Department of Mechanical Engineering, Ben Gurion University of the Negev, Be’er Sheva, Israel, during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Tessarotto.

Appendix: Derivation of Euler Equation

Appendix: Derivation of Euler Equation

To prove Eq. (52) let us apply term by term the operator \(\frac{1}{m }\nabla \) to the quantum phase-function equation (45). Then invoking the definition (42) there it follows

$$\begin{aligned} \frac{\partial }{\partial t}\mathbf {V+}\frac{1}{2m^{2}}\nabla \left( \nabla S-\frac{q}{c}\mathbf {A}\right) ^{2}=-\frac{q}{mc}\frac{ \partial }{\partial t}\mathbf {A}-\frac{1}{m}\nabla q\phi -\frac{1}{m}\nabla \widehat{U}_{QM}. \end{aligned}$$
(146)

Consider, as an illustration, the case of the 1-body Schrödinger equation. In this case the following identity applies to the 1-body vector

$$\begin{aligned} \frac{1}{2m^{2}}\nabla \left( \nabla S-\frac{q}{c}\mathbf {A}\right) ^{2}= & {} \frac{1}{m^{2}}\left( \nabla S-\frac{q}{c}\mathbf {A}\right) \cdot \nabla \left( \nabla S-\frac{q}{c}\mathbf {A}\right) \nonumber \\&+\,\frac{1}{m^{2}}\left( \nabla S-\frac{q}{c}\mathbf {A}\right) \times \left[ \nabla \times \left( \nabla S-\frac{q}{c}\mathbf {A}\right) \right] \nonumber \\= & {} \mathbf {V}\cdot \nabla \mathbf {V-}\frac{q}{mc}\mathbf {V}\times \mathbf {B.} \end{aligned}$$
(147)

As a consequence the Euler equation (52) immediately follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarotto, M., Mond, M. & Batic, D. Hamiltonian Structure of the Schrödinger Classical Dynamical System. Found Phys 46, 1127–1167 (2016). https://doi.org/10.1007/s10701-016-0012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0012-0

Keywords

Navigation