Skip to main content
Log in

Macroscopic Time Evolution and MaxEnt Inference for Closed Systems with Hamiltonian Dynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated with the set of phase space paths determined by solutions of Hamilton’s equations. The MaxEnt inference algorithm with Shannon’s concept of the conditional information entropy is then applied to prediction, consistently with this strict microscopic constraint on time evolution in phase space. The second approach is based on the same concepts, with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic constraint given by a phase space average. We consider the incomplete nature of our information about microscopic dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics, and the concept of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. Information entropy is the theoretic upper bound on the conditional information entropy, with the upper bound attained only in case of the complete loss of correlation. In this alternative approach to prediction of macroscopic time evolution, maximization of the conditional information entropy is equivalent to the loss of statistical correlation, and leads to corresponding loss of information. In accordance with the original idea of Jaynes, irreversibility appears as a consequence of gradual loss of information about possible microstates of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  2. Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  3. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Yale University Press, New Haven (1902)

    MATH  Google Scholar 

  4. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948). Reprinted in: Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

  5. Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, K.W. (ed.) 1962 Brandeis Lectures in Theoretical Physics, vol. 3, pp. 181–218. W.A. Benjamin, Inc., New York (1963)

    Google Scholar 

  6. Jaynes, E.T.: Gibbs vs Boltzmann entropies. Am. J. Phys. 33, 391–398 (1965)

    Article  ADS  MATH  Google Scholar 

  7. Jaynes, E.T.: Where do we stand on maximum entropy? In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 15–118. MIT Press, Cambridge (1979)

    Google Scholar 

  8. Jaynes, E.T.: The minimum entropy production principle. Annu. Rev. Phys. Chem. 31, 579–601 (1980)

    Article  ADS  Google Scholar 

  9. Jaynes, E.T.: Macroscopic prediction. In: Haken, H. (ed.) Complex Systems—Operational Approaches in Neurobiology, Physics, and Computers, pp. 254–269. Springer, Berlin (1985)

    Chapter  Google Scholar 

  10. Grandy, W.T.: Principle of maximum entropy and irreversible processes. Phys. Rep. 62, 175–266 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  11. Garrod, C.: Statistical Mechanics and Thermodynamics. Oxford University Press, New York (1995)

    Google Scholar 

  12. Jaynes, E.T.: The second law as physical fact and as human inference. Unpublished manuscript (1990). http://bayes.wustl.edu/etj/node2.html

  13. Zurek, W.H.: Algorithmic randomness and physical entropy. Phys. Rev. A 40, 4731–4751 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  14. Duncan, T.L., Semura, J.S.: The deep physics behind the second law: information and energy as independent forms of bookkeeping. Entropy 6, 21–29 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Duncan, T.L., Semura, J.S.: Information loss as a foundational principle for the second law of thermodynamics. Found. Phys. 37, 1767–1773 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Grandy, W.T.: Time evolution in macroscopic systems. I. Equations of motion. Found. Phys. 34, 1–20 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Grandy, W.T.: Time evolution in macroscopic systems. II. The entropy. Found. Phys. 34, 21–57 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Grandy, W.T.: Time evolution in macroscopic systems. III. Selected applications. Found. Phys. 34, 771–813 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Tishby, N.Z., Levine, R.D.: Time evolution via a self-consistent maximal-entropy propagation: the reversible case. Phys. Rev. A 30, 1477–1490 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  20. Plastino, A.R., Plastino, A.: Statistical treatment of autonomous systems with divergenceless flows. Physica A 232, 458–476 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  21. Plastino, A., Plastino, A.R., Miller, H.G.: Continuity equations, H-theorems, and maximum entropy. Phys. Lett. A 232, 349–355 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Plastino, A.R., Plastino, A.: Universality of Jaynes’ approach to the evolution of time-dependent probability distributions. Physica A 258, 429–445 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  23. Schönfeldt, J.-H., Jimenez, N., Plastino, A.R., Plastino, A., Casas, M.: Maximum entropy principle and classical evolution equations with source terms. Physica A 374, 573–584 (2007)

    Article  ADS  Google Scholar 

  24. Khinchin, A.I.: Mathematical Foundations of Statistical Mechanics. Dover, New York (1949)

    MATH  Google Scholar 

  25. Wan, F.Y.M.: Introduction to the Calculus of Variations and Its Applications. Chapman & Hall, New York (1995)

    MATH  Google Scholar 

  26. Kittel, C.: Elementary Statistical Physics. Wiley, New York (1958)

    Google Scholar 

  27. Zurek, W.H., Paz, J.-P.: Decoherence, chaos, and the second law. Phys. Rev. Lett. 72, 2508–2512 (1994)

    Article  ADS  Google Scholar 

  28. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003). Bretthorst, G.L. (ed.)

    Book  MATH  Google Scholar 

  30. Zwick, M.: Quantum measurement and Gödel’s proof. Specul. Sci. Technol. 1, 135–145 (1978)

    Google Scholar 

  31. Gödel, K.: On Formally Undecidable Propositions of Principia Mathematica and Related Systems. Basic Books, Inc., New York (1962)

    MATH  Google Scholar 

  32. Nagel, E., Newman, J.R.: Gödel’s Proof. New York University Press, New York (1960)

    Google Scholar 

  33. Pattee, H.H.: Postscript. In: Pattee, H.H. (ed.) Hierarchy Theory, pp. 131–156. George Braziller, New York (1973)

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank the anonymous reviewer for insightful suggestions that significantly improved the submitted manuscript. The present work was supported by Croatian MZOS project no. 177-1770495-0476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domagoj Kuić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuić, D., Županović, P. & Juretić, D. Macroscopic Time Evolution and MaxEnt Inference for Closed Systems with Hamiltonian Dynamics. Found Phys 42, 319–339 (2012). https://doi.org/10.1007/s10701-011-9604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9604-x

Keywords

Navigation