Skip to main content
Log in

Quantum Covers in Quantum Measure Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Sorkin’s recent proposal for a realist interpretation of quantum theory, the anhomomorphic logic or coevent approach, is based on the idea of a “quantum measure” on the space of histories. This is a generalisation of the classical measure to one which admits pair-wise interference and satisfies a modified version of the Kolmogorov probability sum rule. In standard measure theory the measure on the base set Ω is normalised to one, which encodes the statement that “Ω happens”. Moreover, the Kolmogorov sum rule implies that the measure of any subset A is strictly positive if and only if A cannot be covered by a countable collection of subsets of zero measure. In quantum measure theory on the other hand, simple examples suffice to demonstrate that this is no longer true. We propose an appropriate generalisation, the quantum cover, which in addition to being a cover of A, satisfies the property that if the quantum measure of A is non-zero then this is also the case for at least one of the elements in the cover. Our work implies a non-triviality result for the coevent interpretation for Ω of finite cardinality, and allows us to cast the Peres-Kochen-Specker theorem in terms of quantum covers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gell-Mann, M., Hartle, J.B.: Phys. Rev. D 47, 3345 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  2. Sorkin, R.D.: Mod. Phys. Lett. A 9, 3119 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Sorkin, R.D.: In: Feng, D.H., Hu, B.-L. (eds.) Quantum Classical Correspondence: Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Philadelphia, 8–11 September 1994, pp. 229–251. International Press, Cambridge (1997). arXiv:gr-qc/9507057

    Google Scholar 

  4. Sorkin, R.D.: J. Phys. A 40, 3207 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Sorkin, R.D.: J. Phys. Conf. Ser. 67, 012018 (2007)

    Article  ADS  Google Scholar 

  6. Martin, X., O’Connor, D., Sorkin, R.D.: Phys. Rev. D 71, 024029 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Kochen, S., Specker, E.: J. Math. Mech. 17, 59–83 (1967)

    MATH  MathSciNet  Google Scholar 

  8. Peres, A.: J. Phys. A, Math. Gen. 24, L175–L178 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  9. Dowker, F., Ghazi-Tabatabai, Y.: J. Phys. A 41, 105301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. Engle, K.: Sperner Theory. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  11. Salgado, R.B.: Mod. Phys. Lett. A 17, 711 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Sinha, U., Couteau, C., Medendorp, Z., Söllner, I., Laflamme, R., Sorkin, R., Weihs, G.: arXiv:0811.2068v1 [quant-ph]

  13. Ghazi-Tabatabai, Y., Wallden, P.: J. Phys. A, Math. Theor. 42, 235303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumati Surya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surya, S., Wallden, P. Quantum Covers in Quantum Measure Theory. Found Phys 40, 585–606 (2010). https://doi.org/10.1007/s10701-010-9419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9419-1

Keywords

Navigation