Skip to main content
Log in

Parametric computation of a fuzzy set solution to a class of fuzzy linear fractional optimization problems

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

The class of fuzzy linear fractional optimization problems with fuzzy coefficients in the objective function is considered in this paper. We propose a parametric method for computing the membership values of the extreme points in the fuzzy set solution to such problems. We replace the exhaustive computation of the membership values—found in the literature for solving the same class of problems—by a parametric analysis of the efficiency of the feasible basic solutions to the bi-objective linear fractional programming problem through the optimality test in a related linear programming problem, thus simplifying the computation. An illustrative example from the field of production planning is included in the paper to complete the theoretical presentation of the solving approach, but also to emphasize how many real life problems may be modelled mathematically using fuzzy linear fractional optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Biswas, A., & Bose, K. (2012). Application of fuzzy programming method for solving nonlinear fractional programming problems with fuzzy parameters. In P. Balasubramaniam & R. Uthayakumar (Eds.), Mathematical modelling and scientific computation, communications in computer and information science (Vol. 283, pp. 104–113). Berlin: Springer.

    Chapter  Google Scholar 

  • Cadenas, J. M., & Verdegay, J. L. (1997). Using fuzzy numbers in linear programming. IEEE Transactions on Systems, Man and Cybernetics Part B—Cybernetics, 27(6), 1016–1022. doi:10.1109/3477.650062.

    Article  Google Scholar 

  • Chalco-Cano, Y., Lodwick, W. A., Osuna-Gómez, R., & Rufián-Lizana, A. (2015). The karushkuhntucker optimality conditions for fuzzy optimization problems. Fuzzy Optimization and Decision Making,. doi:10.1007/s10700-015-9213-9.

    Google Scholar 

  • Chanas, S., & Kuchta, D. (1994). Linear programming problem with fuzzy coefficients in the objective function. In M. Delgado, J. Kacprzyk, J. Verdegay, & M. Vila (Eds.), Fuzzy optimization (pp. 148–157). Berlin: Physica-Verlag.

    Google Scholar 

  • Dempe, S., & Ruziyeva, A. (2012). On the calculation of a membership function for the solution of a fuzzy linear optimization problem. Fuzzy Sets and Systems, 188, 58–67. doi:10.1016/j.fss.2011.07.014.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois, D., & Prade, H. (2012). Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, 192, 3–24. doi:10.1016/j.fss.2010.11.007.

    Article  MathSciNet  MATH  Google Scholar 

  • Dziţac, I. (2015). The fuzzification of classical structures. International Journal of Computers, Communications & Control, 10(6), 771–787. doi:10.15837/ijccc.2015.6.2069.

    Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization. Berlin: Springer.

    MATH  Google Scholar 

  • Frenk, J. B. G., & Schaible, S. (2005). Fractional programming. In N. Hadjisavvas, S. Komlosi, & S. Schaible (Eds.), Handbook of generalized convexity and generalized monotonicity, nonconvex optimization and its applications (Vol. 76, pp. 335–386). New York: Springer.

    Chapter  Google Scholar 

  • Kaur, J., & Kumar, A. (2013). A new method to find the unique fuzzy optimal value of fuzzy linear programming problems. Journal of Optimization Theory and Applications, 156(2), 529–534. doi:10.1007/s10957-012-0132-4.

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, I., Ahmad, T., & Maan, N. (2013). A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2), 536–546. doi:10.1007/s10957-012-0215-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Kheirfam, B., & Verdegay, J. L. (2013). The dual simplex method and sensitivity analysis for fuzzy linear programming with symmetric trapezoidal numbers. Fuzzy Optimization and Decision Making, 12, 171–189. doi:10.1007/s10700-012-9152-7.

    Article  MathSciNet  Google Scholar 

  • Liu, S. T. (2015). Fractional transportation problem with fuzzy parameters. Soft Computing,. doi:10.1007/s00500-015-1722-5.

    Google Scholar 

  • Lodwick, W. A. (Ed.). (2010). Fuzzy optimization. New York: Springer.

    MATH  Google Scholar 

  • Lotfi, F. H., Noora, A. A., Jahanshahloo, G. R., Khodabakhshi, M., & Payan, A. (2010). A linear programming approach to test efficiency in multi-objective linear fractional programming problems. Applied Mathematical Modelling, 34, 4179–4183. doi:10.1016/j.apm.2010.04.015.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, R. E. (1966). Interval analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Pop, B., & Stancu-Minasian, I. M. (2008). A method of solving fully fuzzified linear fractional programming problems. Journal of Applied Mathematics and Computing, 27(1–2), 227–242. doi:10.1007/s12190-008-0052-5.

    Article  MathSciNet  MATH  Google Scholar 

  • Razavi, S., Amoozad, H., Zavadskas, E., & Hashemi, S. (2013). A fuzzy data envelopment analysis approach based on parametric programming. International Journal of Computers, Communications & Control, 8(4), 594–607. doi:10.15837/ijccc.2013.4.580.

    Article  Google Scholar 

  • Rommelfanger, H., & Slowinski, R. (1998). Fuzzy linear programming with single or multiple objective functions. In R. Slowinski (Ed.), Fuzzy sets in decision analysis, operations research and statistics (pp. 179–213). Berlin: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Silva, R. C., Cruz, C., & Verdegay, J. L. (2013). Fuzzy costs in quadratic programming problems. Fuzzy Optimization and Decision Making, 12, 231–248. doi:10.1007/s10700-013-9153-1.

    Article  MathSciNet  Google Scholar 

  • Stancu-Minasian, I. M. (1997). Fractional programming: Theory, methods and applications. Berlin: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Stanojević, B. (2015). Extended procedure for computing the values of the membership function of a fuzzy solution to a class of fuzzy linear optimization problems. Fuzzy Sets and Systems, 272, 47–59. doi:10.1016/j.fss.2014.11.002.

    Article  MathSciNet  Google Scholar 

  • Stanojević, B., Dziţac, I., & Dziţac, S. (2015). On the ratio of fuzzy numbers—exact membership function computation and applications to decision making. Technological and Economic Development of Economy, 21(5), 815–832. doi:10.3846/20294913.2015.1093563.

    Article  Google Scholar 

  • Stanojević, B., & Stancu-Minasian, I. M. (2012). Evaluating fuzzy inequalities and solving fully fuzzified linear fractional program. Yugoslav Journal of Operations Research, 22, 41–50. doi:10.2298/YJOR110522001S.

    Article  MathSciNet  MATH  Google Scholar 

  • Stanojević, B., & Stanojević, M. (2013). Parametric computation of a membership function for the solution of a fuzzy linear fractional optimization problem. In N. Mladenović, G. Savić, M. Kuzmanović, D. Makajić-Nikolić, & M. Stanojević (Eds.), Proceedings of the 11th Balkan conference on operational reasearch (pp. 507–513). Santa Barbara: Newpress.

  • Stanojević, B., & Stanojević, M. (2013). Solving method for linear fractional optimization problem with fuzzy coefficients in the objective function. International Journal of Computers, Communications & Control, 8, 146–152.

    Article  MATH  Google Scholar 

  • Uhrig, R., & Tsoukalas, L. (1997). Fuzzy and neural approaches in engineering. Hoboken: Wiley.

    Google Scholar 

  • Zimmermann, H. J. (1985). Applications of fuzzy set theory to mathematical programming. Information Sciences, 36(1), 29–58. doi:10.1016/0020-0255(85)90025-8.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann, H. J. (1996). Fuzzy set theory and its applications. Berlin: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Education and Science, Republic of Serbia, Project numbers TR36006 and TR32013. The authors want to express their gratitude to the anonymous referees for their valuable suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdana Stanojević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanojević, B., Stanojević, M. Parametric computation of a fuzzy set solution to a class of fuzzy linear fractional optimization problems. Fuzzy Optim Decis Making 15, 435–455 (2016). https://doi.org/10.1007/s10700-016-9232-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-016-9232-1

Keywords

Mathematics Subject Classification

Navigation