Skip to main content
Log in

Computing fuzzy process efficiency in parallel systems

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

This paper deals with parallel process systems in which the input and output data are fuzzy. The \(\upalpha \)-level based approach is used to compute the fuzzy system efficiency and a simple procedure is proposed to estimate the fuzzy efficiency of the different processes. The main contribution of the paper is estimating the latter taking into account the variability of the process efficiencies compatible with a given value of the system efficiency. This variability comes from the existence of alternative optimal weights in the system efficiency multiplier network DEA models. The computation of the fuzzy system efficiency involves one Linear and one Non-linear Program for each \(\upalpha \)-cut while the computation of each process efficiency requires solving just a couple of related Linear Programs for each \(\upalpha \)-cut. The proposed approach is illustrated with a parallel systems dataset extracted from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashrafi, A., & Jaafar, A. B. (2011). Efficiency measurement of series and parallel production systems with interval data by data envelopment analysis. Australian Journal of Basic and Applied Sciences, 5(11), 1435–1443.

    MATH  MathSciNet  Google Scholar 

  • Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34, 35–49.

    Article  Google Scholar 

  • Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214, 457–472.

    Article  MATH  MathSciNet  Google Scholar 

  • Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185, 418–429.

    Article  MATH  Google Scholar 

  • Kao, C., & Hwang, S. N. (2010). Efficiency measurement for network systems: IT impact on firm performance. Decision Support Systems, 48(3), 437–446.

    Article  Google Scholar 

  • Kao, C., & Liu, S. T. (2011). Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets and Systems, 176, 20–35.

    Article  MATH  MathSciNet  Google Scholar 

  • Kao, C. (2012). Efficiency decomposition for parallel production systems. Journal of the Operational Research Society, 63, 64–71.

    Article  Google Scholar 

  • Kao, C., & Lin, P. H. (2012). Efficiency of parallel production systems with fuzzy data. Fuzzy Sets and Systems, 198, 83–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Lertworasirikul, S., Fang, S. C., Nuttle, H. L., & Joines, J. A. (2003a). Fuzzy BCC model for data envelopment analysis. Fuzzy Optimization and Decision Making, 2, 337–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Lertworasirikul, S., Fang, S. C., Joines, J. A., & Nuttle, H. L. W. (2003b). Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy Sets and Systems, 139, 379–394.

    Article  MATH  MathSciNet  Google Scholar 

  • Lertworasirikul, S., Fang, S. C., Joines, J. A., & Nuttle, H. L. W. (2003c). Fuzzy data envelopment analysis: A credibility approach. In Fuzzy sets based heuristics for optimization. Studies in fuzziness and soft computing, vol. 126, pp. 141–158.

  • Lozano, S. (2011). Scale and cost efficiency analysis of networks of processes. Expert Systems With Applications, 38(6), 6612–6617.

    Article  MathSciNet  Google Scholar 

  • Lozano, S., Gutiérrez, E., & Moreno, P. (2013). Network DEA approach to airports performance assessment considering undesirable outputs. Applied Mathematical Modelling, 37(4), 1665–1676.

    Article  Google Scholar 

  • Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197, 243–252.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was carried out with the financial support of the Spanish Ministry of Science grant DPI2010-16201, and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Lozano.

Appendices

Appendix A

In order to linearize model (6) just consider the new variables

$$\begin{aligned} \hat{\mathrm{x}}_{\mathrm{ij}}^\mathrm{p}&= \hbox {u}_\mathrm{i} \cdot \hbox {x}_{\mathrm{ij}}^\mathrm{p} \quad \forall \mathrm{j} \forall \mathrm{p} \forall \mathrm{i}\\ \hat{\mathrm{y}}_{\mathrm{kj}}^\mathrm{p}&= \hbox {v}_\mathrm{k} \cdot \hbox {y}_{\mathrm{kj}}^\mathrm{p} \quad \forall \mathrm{j} \forall \mathrm{p} \forall \mathrm{k} \end{aligned}$$

Expressing the model with these variables results in the following Linear Program (LP)

$$\begin{aligned}&\left( {\hbox {E}_0 } \right) _\upalpha ^\mathrm{U} =\hbox {max} \sum _\mathrm{p}\sum _\mathrm{k}{\hat{\mathrm{y}}_{\mathrm{k0}}^\mathrm{p} } \nonumber \\&\hbox {s.t.}\nonumber \\&\sum _\mathrm{p} {\sum _\mathrm{i} {\hat{\hbox {x}}_\mathrm{i0}^\mathrm{p}}} =1\nonumber \\&\sum _\mathrm{k}\hbox {v}_\mathrm{k} \cdot \hat{{\mathrm{y}}}_{\mathrm{kj}}^\mathrm{p} -\sum _\mathrm{i}\hbox {u}_\mathrm{i}\cdot \hat{{\mathrm{x}}}_{\mathrm{ij}}^\mathrm{p} \le 0\quad \forall \mathrm{j} \forall \mathrm{p}\\&\hbox {u}_\mathrm{i} \cdot \left( {\hbox {X}_{\mathrm{ij}}^\mathrm{p} } \right) _\upalpha ^\mathrm{L} \le \hat{\hbox {x}}_{\mathrm{ij}}^\mathrm{p} \le \hbox {u}_\mathrm{i} \cdot \left( {\hbox {X}_{\mathrm{ij}}^\mathrm{p} } \right) _\upalpha ^\mathrm{U} \quad \forall \mathrm{j}\forall \mathrm{p} \forall \mathrm{i}\nonumber \\&\hbox {v}_\mathrm{k} \cdot \left( {\hbox {Y}_{\mathrm{kj}}^\mathrm{p} } \right) _\upalpha ^\mathrm{L} \le \hat{{\hbox {y}}}_{\mathrm{kj}}^\mathrm{p} \le \hbox {v}_\mathrm{k} \cdot \left( {\hbox {Y}_{\mathrm{kj}}^\mathrm{p} } \right) _\upalpha ^\mathrm{U} \quad \forall \mathrm{j}\forall \mathrm{p} \forall \mathrm{k}\nonumber \\&\hbox {u}_\mathrm{i}, \hbox {v}_\mathrm{k} \ge 0\quad \forall \mathrm{i} \forall \mathrm{k}\nonumber \end{aligned}$$
(18)

Appendix B

In order to linearize model (16) consider the same new variables as in Appendix A. The resulting LP is

$$\begin{aligned}&\left( {\hbox {E}_0^{\hat{{\mathrm{p}}}} } \right) _\upalpha ^\mathrm{U} =\hbox {max} \sum _\mathrm{k}{\hat{\hbox {y}}_{\mathrm{k0}}^{\hat{\mathrm{p}}} }\nonumber \\&\hbox {s.t.}\nonumber \\&\sum _\mathrm{i}\hat{{\hbox {x}}}_{\mathrm{i0}}^{\hat{\mathrm{p}}} =1\nonumber \\&\sum _\mathrm{k}\hbox {v}_\mathrm{k} \cdot \hat{\hbox {y}}_{\mathrm{kj}}^\mathrm{p} -\sum _\mathrm{i}\hbox {u}_\mathrm{i} \cdot \hat{\hbox {x}}_{\mathrm{ij}}^\mathrm{p} \le 0\quad \forall \mathrm{j} \forall \mathrm{p}\nonumber \\&\sum _\mathrm{p}\sum _\mathrm{k}\hat{\hbox {y}}_{\mathrm{k0}}^\mathrm{p} - \left( {\hbox {E}_0} \right) _\upalpha ^\mathrm{U} \cdot \left[ \sum _\mathrm{p}\sum _\mathrm{i}{\hat{\hbox {x}}_{\mathrm{i0}}^\mathrm{p} } \right] =0\\&\hbox {u}_\mathrm{i} \cdot \left( {\hbox {X}_{\mathrm{ij}}^\mathrm{p} } \right) _\upalpha ^\mathrm{L} \le \hat{{\hbox {x}}}_{\mathrm{ij}}^\mathrm{p} \le \hbox {u}_\mathrm{i} \cdot \left( {\hbox {X}_{\mathrm{ij}}^\mathrm{p}} \right) _\upalpha ^\mathrm{U} \quad \forall \mathrm{j} \forall \mathrm{p} \forall \mathrm{i}\nonumber \\&\hbox {v}_\mathrm{k} \cdot \left( {\hbox {Y}_{\mathrm{kj}}^\mathrm{p} } \right) _\upalpha ^\mathrm{L} \le \hat{{\hbox {y}}}_{\mathrm{kj}}^\mathrm{p} \le \hbox {v}_\mathrm{k} \cdot \left( {\hbox {Y}_{\mathrm{kj}}^\mathrm{p}} \right) _\upalpha ^\mathrm{U} \quad \forall \mathrm{j} \forall \mathrm{p} \forall \mathrm{k}\nonumber \\&\hbox {u}_\mathrm{i}, \hbox {v}_\mathrm{k} \ge 0\quad \forall \mathrm{i} \forall \mathrm{k}\nonumber \end{aligned}$$
(19)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano, S. Computing fuzzy process efficiency in parallel systems. Fuzzy Optim Decis Making 13, 73–89 (2014). https://doi.org/10.1007/s10700-013-9170-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-013-9170-0

Keywords

Navigation