Skip to main content
Log in

Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

Using the expression of the exact solution to a periodic boundary value problem for an impulsive first-order linear differential equation, we consider an extension to the fuzzy case and prove the existence and uniqueness of solution for a first-order linear fuzzy differential equation with impulses subject to boundary value conditions. We obtain the explicit solution by calculating the solutions on each level set and justify that the parametric functions obtained define a proper fuzzy function. Our results prove that the solution of the fuzzy differential equation of interest is determined, under the appropriate conditions, by the same Green’s function obtained for the real case. Thus, the results proved extend some theorems given for ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S., Stamova I. M. (2007) Asymptotic stability of competitive systems with delays and impulsive perturbations. Journal of Mathematical Analysis and Applications 334: 686–700

    Article  MathSciNet  MATH  Google Scholar 

  • Aubin J. P., Cellina A. (1984) Differential inclusions: Set-valued maps and viability theory. Springer, Berlin

    MATH  Google Scholar 

  • Bede B. (2006) A note on two-point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets and Systems 157(7): 986–989

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B., Gal S. G. (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems 151: 581–599

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B., Rudas I. J., Bencsik A. L. (2007) First order linear fuzzy differential equations under generalized differentiability. Information Sciences 177: 1648–1662

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y., Román-Flores H. (2009) Comparation between some approaches to solve fuzzy differential equations. Fuzzy Sets and Systems 160(11): 1517–1527

    Article  MathSciNet  MATH  Google Scholar 

  • Chen M., Fu Y., Xue X., Wu C. (2008) Two-point boundary value problems of undamped uncertain dynamical systems. Fuzzy Sets and Systems 159(16): 2077–2089

    Article  MathSciNet  MATH  Google Scholar 

  • Diamond P. (1999) Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations. IEEE Transactions on Fuzzy Systems 7: 734–740

    Article  MathSciNet  Google Scholar 

  • Diamond P. (2002) Brief note on the variation of constant formula for fuzzy differential equations. Fuzzy Sets and Systems 129: 65–71

    Article  MathSciNet  MATH  Google Scholar 

  • Diamond P., Kloeden P. E (1994) Metric spaces of fuzzy sets. Theory and applications. World Scientific Publishing, River Edge

    MATH  Google Scholar 

  • Dubois D., Prade H. (1978) Operations on fuzzy number. International Journal of Systems Science 9: 613–626

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D., Prade H. (1982a) Towards fuzzy differential calculus part I: Integration of fuzzy mappings. Fuzzy Sets and Systems 8: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D., Prade H. (1982b) Towards fuzzy differential calculus part II: Integration of fuzzy mappings. Fuzzy Sets and Systems 8: 105–116

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D., Prade H. (1982c) Towards fuzzy differential calculus part III: Differentation. Fuzzy Sets and Systems 8: 225–233

    Article  MathSciNet  MATH  Google Scholar 

  • d’Onofrio A. (2005) On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Applied Mathematics Letters 18: 729–732

    Article  MathSciNet  MATH  Google Scholar 

  • Gao S., Chen L., Nieto J. J, Torres A. (2006) Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24: 6037–6045

    Article  Google Scholar 

  • Hu L., Yang A. (2009) Fuzzy model-based control of nonlinear stochastic systems with time-delay. Nonlinear analysis: Theory, Methods & Applications 71(12): e2855–e2865

    Article  MathSciNet  Google Scholar 

  • Huang Z., Wang X., Xia Y. (2007) A predator-prey system with anorexia response. Nonlinear Analysis: Real World Applications 8: 1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Hüllermeier E. (1997) An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(2): 117–137

    Article  MathSciNet  Google Scholar 

  • Kaleva O. (1987) Fuzzy differential equations. Fuzzy Sets and Systems 24: 301–317

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O. (1990) The Cauchy problem for fuzzy differential equations. Fuzzy Sets and Systems 35: 389–396

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O. (2006) A note on fuzzy differential equations. Nonlinear Analysis 64: 895–900

    Article  MathSciNet  MATH  Google Scholar 

  • Khastan A., Nieto J.J., Rodríguez-López R. (2011) Variation of constant formula for first order fuzzy differential equations. Fuzzy Sets and Systems 177(1): 20–33

    Article  Google Scholar 

  • Ladde G. S., Lakshmikantham V., Vatsala A. S. (1985) Monotone iterative techniques for nonlinear differential equations. Pitman, Boston

    MATH  Google Scholar 

  • Lakshmikantham V., Bainov D. D., Simeonov P. S. (1989) Theory of impulsive differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  • Lakshmikantham V., Mohapatra R. N. (2003) Theory of fuzzy differential equations and inclusions. Taylor & Francis, London

    Book  MATH  Google Scholar 

  • Li W., Huo H. (2005) Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics. Journal of Computational and Applied Mathematics 174: 227–238

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M., Jin Z., Haque M. (2009) An impulsive predator-prey model with communicable disease in the prey species only. Nonlinear Analysis: Real World Applications 10: 3098–3111

    Article  MathSciNet  MATH  Google Scholar 

  • Liu X., Huang L. (2009) Periodic solutions for impulsive semi-ratio-dependent predator-prey systems. Nonlinear Analysis: Real World Applications 10: 3266–3274

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z., Jing Z. (2008) Periodic boundary value problem for first-order impulsive functional differential equations. Computers & Mathematics with Applications 55(9): 2094–2107

    MathSciNet  MATH  Google Scholar 

  • Lupulescu V. (2009) On a class of fuzzy functional differential equations. Fuzzy Sets and Systems 160(11): 1547–1562

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto J. J., Rodríguez-López R. (2006) Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. Journal of Mathematical Analysis and Applications 318: 593–610

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto J. J., Rodríguez-López R. (2007) New comparison results for impulsive integrodifferential equations and applications. Journal of Mathematical Analysis and Applications 328: 1343–1368

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto J. J., Rodríguez-López R., Franco D. (2006) Linear first-order fuzzy differential equations. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14: 687–709

    Article  MathSciNet  MATH  Google Scholar 

  • Nieto J. J., Rodríguez-López R., Villanueva-Pesqueira M. (2011) Green’s function for the periodic boundary value problem related to a first-order impulsive differential equation and applications to functional problems. Differential Equations and Dynamical Systems 19(3): 199–210

    Article  Google Scholar 

  • Puri M. L., Ralescu D. A. (1983) Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications 91: 552–558

    Article  MathSciNet  MATH  Google Scholar 

  • Qian D., Li X. (2005) Periodic solutions for ordinary differential equations with sublinear impulsive effects. Journal of Mathematical Analysis and Applications 303: 288–303

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez-López R. (2008a) Periodic boundary value problems for impulsive fuzzy differential equations. Fuzzy Sets and Systems 159: 1384–1409

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez-López R. (2008b) Monotone method for fuzzy differential equations. Fuzzy Sets and Systems 159(16): 2047–2076

    Article  MathSciNet  MATH  Google Scholar 

  • Rogovchenko Y. V. (1997) Impulsive evolution systems: Main results and new trends. Dynamics of Continuous Discrete and Impulsive Systems 3: 57–88

    MathSciNet  MATH  Google Scholar 

  • Samoilenko A. M., Perestyuk N. A. (1995) Impulsive differential equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Smart D. R. (1984) Fixed point theorems. Cambridge University Press, Cambridge

    Google Scholar 

  • Stefanini L., Bede B. (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods & Applications 71: 1311–1328

    Article  MathSciNet  MATH  Google Scholar 

  • Tang S., Chen L. (2002) Density-dependent birth rate, birth pulses and their population dynamic consequences. Journal of Mathematical Biology 44: 185–199

    Article  MathSciNet  Google Scholar 

  • Xiang H., Cao J. (2009) Almost periodic solutions of recurrent neural networks with continuously distributed delays. Nonlinear Analysis: Theory, Methods & Applications 71(12): 6097–6108

    Article  MathSciNet  MATH  Google Scholar 

  • Yan J., Zhao A., Nieto J. J. (2004) Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems. Mathematical and Computer Modelling 40: 509–518

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L. A. (1965) Fuzzy sets. Information and Control 8: 338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zavalishchin S. T., Sesekin A. N. (1997) Dynamic impulse systems. Theory and applications. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Zhang W., Fan M. (2004) Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays. Mathematical and Computer Modelling 39: 479–493

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X., Shuai Z., Wang K. (2003) Optimal impulsive harvesting policy for single population. Nonlinear analysis: Real world applications 4: 639–651

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Rodríguez-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieto, J.J., Rodríguez-López, R. & Villanueva-Pesqueira, M. Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optim Decis Making 10, 323–339 (2011). https://doi.org/10.1007/s10700-011-9108-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-011-9108-3

Keywords

Navigation