Skip to main content
Log in

General results on the decomposition of transitive fuzzy relations

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

We study the transitivity of fuzzy preference relations, often considered as a fundamental property providing coherence to a decision process. We consider the transitivity of fuzzy relations w.r.t. conjunctors, a general class of binary operations on the unit interval encompassing the class of triangular norms usually considered for this purpose. Having fixed the transitivity of a large preference relation w.r.t. such a conjunctor, we investigate the transitivity of the strict preference and indifference relations of any fuzzy preference structure generated from this large preference relation by means of an (indifference) generator. This study leads to the discovery of two families of conjunctors providing a full characterization of this transitivity. Although the expressions of these conjunctors appear to be quite cumbersome, they reduce to more readily used analytical expressions when we focus our attention on the particular case when the transitivity of the large preference relation is expressed w.r.t. one of the three basic triangular norms (the minimum, the product and the Łukasiewicz triangular norm) while at the same time the generator used for decomposing this large preference relation is also one of these triangular norms. During our discourse, we pay ample attention to the Frank family of triangular norms/copulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsina C. (1985) On a family of connectives for fuzzy sets. Fuzzy Sets and Systems 16: 231–235

    Article  MathSciNet  Google Scholar 

  • Alsina C., Frank M. J., Schweizer B. (2006) Associative functions: triangular norms and copulas. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  • Alsina C., Nelsen R. B., Schweizer B. (1993) On the characterization of a class of binary operations on distribution functions. Statistics & Probability Letters 17: 85–89

    Article  MATH  MathSciNet  Google Scholar 

  • Arrow K. J. (1951) Social choice and individual values. Wiley, London

    MATH  Google Scholar 

  • Bilgiç T. (1998) Interval-valued preference structures. European Journal of Operational Research 105: 162–183

    Article  MATH  Google Scholar 

  • Dasgupta M., Deb R. (1996) Transitivity and fuzzy preferences. Social Choice and Welfare 13: 305–318

    Article  MATH  MathSciNet  Google Scholar 

  • Dasgupta M., Deb R. (2001) Factoring fuzzy transitivity. Fuzzy Sets and Systems 118: 489–502

    Article  MATH  MathSciNet  Google Scholar 

  • De Baets B., De Meyer H., Díaz S (2009) On an idempotent transformation of aggregation functions and its application on absolutely continuous Archimedean copulas. Fuzzy Sets and Systems 160: 733–751

    Article  MATH  MathSciNet  Google Scholar 

  • De Baets B., Fodor J. (1997) Twenty years of fuzzy preference structures (1978–1997). Belg. J. Oper. Res. Statist. Comput. Sci. 37: 61–82

    MATH  MathSciNet  Google Scholar 

  • De Baets, B., & Fodor, J. (2003). Additive fuzzy preference structures: The next generation. In B. De Baets & J. Fodor, Principles of fuzzy preference modelling and decision making (pp. 15–25). London: Academic Press.

  • De Baets B., Janssens S., De Meyer H. (2006) Meta-theorems on inequalities for scalar fuzzy set cardinalities. Fuzzy Sets and Systems 157: 1463–1476

    Article  MATH  MathSciNet  Google Scholar 

  • De Baets B., Mesiar R. (1998) T-partitions. Fuzzy Sets and Systems 97: 211–223

    Article  MATH  MathSciNet  Google Scholar 

  • De Baets, B., & Van de Walle, B. (1997). Minimal definitions of classical and fuzzy preference structures. In Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (pp. 299-304). USA: Syracuse, New York.

  • De Baets B., Van De Walle B., Kerre E. (1995) Fuzzy preference structures without incomparability. Fuzzy Sets and Systems 76: 333–348

    Article  MATH  MathSciNet  Google Scholar 

  • Díaz S., De Baets B., Montes S. (2003) On the transitivity of fuzzy indifference relations. Lecture Notes in Artificial Intelligence 2715: 87–94

    Google Scholar 

  • Díaz S., De Baets B., Montes S. (2007) Additive decomposition of fuzzy pre-orders. Fuzzy Sets and Systems 158: 830–842

    Article  MATH  MathSciNet  Google Scholar 

  • Díaz S., De Baets B., Montes S. (2008) On the compositional characterization of complete fuzzy pre-orders. Fuzzy Sets and Systems 159: 2221–2239

    Article  MATH  MathSciNet  Google Scholar 

  • Díaz S., Montes S., De Baets B. (2004) Transitive decomposition of fuzzy preference relations: The case of nilpotent minimum. Kybernetika 40: 71–88

    MathSciNet  Google Scholar 

  • Díaz S., Montes S., De Baets B. (2007) Transitivity bounds in additive fuzzy preference structures. IEEE Transactions on Fuzzy Systems 15: 275–286

    Article  Google Scholar 

  • Fernández E., Navarro J., Duarte A. (2008) Multicriteria sorting using a valued preference closeness relation. European Journal of Operational Research 185: 673–686

    Article  MATH  Google Scholar 

  • Fodor J., Roubens M. (1994) Valued preference structures. European Journal of Operational Research 79: 277–286

    Article  MATH  Google Scholar 

  • Fodor J., Roubens M. (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Fodor J., Roubens M. (1995) Structure of transitive valued binary relations. Mathematical Social Sciences 30: 71–94

    Article  MATH  MathSciNet  Google Scholar 

  • Genest C., Quesada-Molina J. J., Rodríguez-Lallena J. A., Sempi C. (1999) A characterization of quasi-copulas. Journal of Multivariate Analysis 69: 193–205

    Article  MATH  MathSciNet  Google Scholar 

  • Hájek P. (1998) Metamathematics of fuzzy logic. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Haven E. (2002) Fuzzy interval and semi-orders. European Journal of Operational Research 139: 302–316

    Article  MATH  MathSciNet  Google Scholar 

  • Herrera-Viedma E., Herrera F., Chiclana F., Luque M. (2004) Some issues on consistency of fuzzy preference relations. European Journal of Operational Research 154: 98–109

    Article  MATH  MathSciNet  Google Scholar 

  • Janssens S., De Baets B., De Meyer H. (2004) Bell-type inequalities for quasi-copulas. Fuzzy Sets and Systems 148: 263–278

    Article  MATH  MathSciNet  Google Scholar 

  • Klement E. P., Mesiar R., Pap E. (2000) Triangular norms. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Nelsen, R. (1994). An Introduction to Copulas, Lecture Notes in Statistics, 139, Springer.

  • Ovchinnikov S. (1991) Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40: 107–126

    Article  MATH  MathSciNet  Google Scholar 

  • Roubens, M., & Vincke, Ph. (1985). Preference Modelling. Lecture Notes in Economics and Mathematical Systems, 76. Springer.

  • Saminger-Platz S., De Baets B., De Meyer H. (2006) On the dominance relation between ordinal sums of conjunctors. Kybernetika 42: 337–350

    MathSciNet  Google Scholar 

  • Saminger-Platz S., De Baets B., De Meyer H. (2009) Differential inequality conditions for dominance between continuous Archimedean t-norms. Mathematical Inequalities and Applications 12: 191–208

    MATH  MathSciNet  Google Scholar 

  • Saminger S., Mesiar R., Bodenhofer U. (2002) Domination of aggregation operators and preservation of transitivity. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10: 11–35

    Article  MATH  MathSciNet  Google Scholar 

  • Sarkoci P. (2005) Domination in the families of Frank and Hamacher t-norms. Kybernetika 41: 349–360

    MathSciNet  Google Scholar 

  • Van de Walle B., De Baets B., Kerre E. (1998) A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures Part 1: General argumentation. Fuzzy Sets and Systems 97: 349–359

    Article  MATH  MathSciNet  Google Scholar 

  • Van de Walle B., De Baets B., Kerre E. (1998) Characterizable fuzzy preference structures. Annals of Operations Research 80: 105–136

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, S., De Baets, B. & Montes, S. General results on the decomposition of transitive fuzzy relations. Fuzzy Optim Decis Making 9, 1–29 (2010). https://doi.org/10.1007/s10700-010-9074-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-010-9074-1

Keywords

Navigation