Skip to main content
Log in

Is Mathematics Problem Solving or Theorem Proving?

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The question that is the subject of this article is not intended to be a sociological or statistical question about the practice of today’s mathematicians, but a philosophical question about the nature of mathematics, and specifically the method of mathematics. Since antiquity, saying that mathematics is problem solving has been an expression of the view that the method of mathematics is the analytic method, while saying that mathematics is theorem proving has been an expression of the view that the method of mathematics is the axiomatic method. In this article it is argued that these two views of the mathematical method are really opposed. In order to answer the question whether mathematics is problem solving or theorem proving, the article retraces the Greek origins of the question and Hilbert’s answer. Then it argues that, by Gödel’s incompleteness results and other reasons, only the view that mathematics is problem solving is tenable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atiyah, M., & Singer, I. (2004). Interview by M. Raussen and C. Skau. Notices of the American Mathematical Society, 52(2), 223–231.

    Google Scholar 

  • Auslander, J. (2008). On the roles of proof in mathematics. In B. Gold & R. A. Simons (Eds.), Proof and other dilemmas. Mathematics and philosophy (pp. 62–77). Washington: The Mathematical Association of America.

    Google Scholar 

  • Bostock, D. (2009). Philosophies of mathematics. An introduction. Madden: Wiley.

    Google Scholar 

  • Cellucci, C. (2007). La filosofia della matematica del Novecento. Roma: Laterza.

    Google Scholar 

  • Cellucci, C. (2013). Rethinking logic. Logic in relation to mathematics, evolution, and method. Dordrecht: Springer.

    Book  Google Scholar 

  • Curry, H. B. (1951). Outlines of a formalist philosophy of mathematics. Amsterdam: North-Holland.

    Google Scholar 

  • Davis, P. J. (1972). Fidelity in mathematical discourse: Is one and one really two? The American Mathematical Monthly, 79, 252–263.

    Article  Google Scholar 

  • Davis, M. (2005). What did Gödel believe and when did he believe it? The Bulletin of Symbolic Logic, 11, 194–206.

    Article  Google Scholar 

  • Detlefsen, M. (1992). On an alleged refutation of Hilbert’s program using Gödel’s first incompleteness theorem. In M. Detlefsen (Ed.), Proof, logic and formalization (pp. 199–235). London: Routledge.

    Google Scholar 

  • Diels, H. & W. Kranz (Eds.) (2014–2015). Die Fragmente der Vorsokratiker. Hildesheim: Olms-Weidman.

  • Feferman, S. (1998). In the light of logic. Oxford: Oxford University Press.

    Google Scholar 

  • Franks, J. (1989). Review of J. Gleick, Chaos: Making a new science. The Mathematical Intelligencer, 11(1), 65–69.

    Google Scholar 

  • Gödel, K. (1986–2002). Collected works. Oxford: Oxford University Press.

  • Gowers, T. (2002). Mathematics. A very short introduction. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gowers, T. (2006). Does mathematics need a philosophy? In R. Hersh (Ed.), 18 unconventional essays on the nature of mathematics (pp. 182–200). New York: Springer.

    Chapter  Google Scholar 

  • Halmos, P. R. (1968). Mathematics as a creative art. American Scientist, 56, 375–389.

    Google Scholar 

  • Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87, 519–524.

    Article  Google Scholar 

  • Hamming, R. W. (1980). The unreasonable effectiveness of mathematics. The American Mathematical Monthly, 87, 81–90.

    Article  Google Scholar 

  • Hamming, R. W. (1998). Mathematics on a distant planet. The American Mathematical Monthly, 105, 640–650.

    Article  Google Scholar 

  • Hersh, R. (1997). What is mathematics, really?. Oxford: Oxford University Press.

    Google Scholar 

  • Hersh, R. (2014). Experiencing mathematics. What do we do, when we do mathematics?. Providence: American Mathematical Society.

    Google Scholar 

  • Hilbert, D. (1902–1903). Über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck. Proceedings of the London Mathematical Society 35: 50–68.

  • Hilbert, D. (1905). Logische Prinzipien des mathematisches Denkens. Göttingen: Bibliothek des Mathematischen Instituts der Universität.

    Google Scholar 

  • Hilbert, D. (1967). The foundations of mathematics. In J. van Heijenoort (Ed.), From Frege to Gödel. A source book in mathematical logic, 1879–1931 (pp. 464–479). Cambridge: Harvard University Press.

    Google Scholar 

  • Hilbert, D. (1980). Letter to Frege, December 29, 1899. In G. Frege (Ed.), Philosophical and mathematical correspondence (pp. 41–43). Oxford: Blackwell.

    Google Scholar 

  • Hilbert, D. (1992). Natur und mathematischen Erkennen. Vorlesungen, gehalten 1919–1920 in Göttingen. Basel: Birkhäuer.

    Google Scholar 

  • Hilbert, D. (1996a). On the concept of number. In W. Ewald (Ed.), From Kant to Hilbert. A source book in the foundations of mathematics, II (pp. 1092–1095). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (1996b). The new grounding of mathematics. First report. In W. Ewald (Ed.), From Kant to Hilbert. A source book in the foundations of mathematics, II (pp. 1117–1134). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (1996c). The logical foundations of mathematics. In W. Ewald (Ed.), From Kant to Hilbert. A source book in the foundations of mathematics, II (pp. 1134–1148). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (1996d). The grounding of elementary number theory. In W. Ewald (Ed.), From Kant to Hilbert. A source book in the foundations of mathematics, II (pp. 1148–1157). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (2000). Mathematical problems. In J. J. Gray (Ed.), The Hilbert challenge (pp. 240–282). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (2013). Beweis des Tertium non datur. In D. Hilbert (Ed.), Lectures on the foundations of arithmetic and logic 1917–1933 (pp. 985–989). Berlin: Springer.

    Google Scholar 

  • Hintikka, J., & Remes, U. (1974). The method of analysis. Its geometrical origin and its general significance. Dordrecht: Springer.

    Google Scholar 

  • Kant, I. (1998). Critique of pure reason. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Knorr, W. R. (1993). The ancient tradition of geometric problems. New York: Dover.

    Google Scholar 

  • Lecat, M. (1935). Erreurs de mathématiciens des origines à nos jours. Bruxelles: Castaigne.

    Google Scholar 

  • Mäenpää, P. (1993). The art of analysis. Logic and history of problem solving. Helsinki: University of Helsinki.

    Google Scholar 

  • Mäenpää, P. (1997). From backward reduction to configurational analysis. In M. Otte & M. Panza (Eds.), Analysis and synthesis in mathematics. History and philosophy (pp. 201–226). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Matiyasevich, Y. (2000). Hilbert’s tenth problem: What was done and what is to be done. In J. Denef, L. Lipshitz, T. Pheidas, & J. Van Geel (Eds.), Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry (pp. 1–47). Providence: American Mathematical Society.

    Chapter  Google Scholar 

  • Newton, I. (1714–1716). An account of the book entituled Commercium Epistolicum Collinii et aliorum, de analysi promota. Philosophical Transactions of the Royal Society of London 29: 173–224.

  • Newton, I. (1967–1981). The mathematical papers. Cambridge: Cambridge University Press.

  • Otte, M., & Panza, M. (Eds.). (1997). Analysis and synthesis in mathematics. History and philosophy. Dordrecht: Springer.

    Google Scholar 

  • Pappus of Alexandria (1876–1878). Collectio. Berlin: Weidmann.

  • Peckhaus, V. (2002). Regressive analysis. In U. Meixner & A. Newen (Eds.), Philosophiegeschichte und logische analyse. Logical analysis and history of philosophy, V (pp. 97–110). Paderborn: Mentis.

    Google Scholar 

  • Poincaré, H. (1921). The foundations of science. New York: The Science Press.

    Google Scholar 

  • Proclus. (1992). In primum Euclidis Elementorum librum commentarii. Hildesheim: Olms.

    Google Scholar 

  • Rota, G.-C. (1981). Introduction. In P. J. Davis & R. Hersh (Eds.), The mathematical experience, xvii–xix. Boston: Birkhäuser.

    Google Scholar 

  • Rota, G.-C. (1997). Indiscrete thoughts. Boston: Birkhäuser.

    Book  Google Scholar 

  • Shoenfield, J. R. (1967). Mathematical logic. Reading: Addison-Wesley.

    Google Scholar 

  • Singh, S. (2002). Fermat’s last theorem. London: Fourth Estate.

    Google Scholar 

  • Timmermans, B. (1995). La résolution des problèmes de Descartes à Kant. Paris: Presses Universitaires de France.

    Google Scholar 

  • Weyl, H. (1998). On the new foundational crisis of mathematics. In P. Mancosu (Ed.), From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920s (pp. 86–118). Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

I am grateful to Reuben Hersh, Nathalie Sinclair, Fabio Sterpetti and four anonymous referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cellucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cellucci, C. Is Mathematics Problem Solving or Theorem Proving?. Found Sci 22, 183–199 (2017). https://doi.org/10.1007/s10699-015-9475-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-015-9475-2

Keywords

Navigation