Skip to main content
Log in

Many-Measurements or Many-Worlds? A Dialogue

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the Born rule, thus solving the measurement problem, but also to deduce a one-world non-spatial reality, providing an even more fantastic scenario than that of the multiverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts, D. (1999). The stuff the world is made of: Physics and reality. pp. 129–183. In D. Aerts, J. Broekaert, E. Mathijs (Eds.), The White Book of ‘Einstein Meets Magritte’. Dordrecht: Kluwer, 274 pp.

  • Aerts, D. (2014). Quantum theory and human perception of the macro-world. Frontiers in Psychology, 5, 554. doi:10.3389/fpsyg.2014.00554.

  • Aerts, D., & Sassoli de Bianchi, M. (2014a). The unreasonable success of quantum probability I: Quantum measurements as uniform measurements. arXiv:1401.2647 [quant-ph].

  • Aerts, D., & Sassoli de Bianchi, M. (2014b). The unreasonable success of quantum probability II: Quantum measurements as universal measurements. arXiv:1401.2650 [quant-ph].

  • Aerts, D., & Sassoli de Bianchi, M. (2014c). The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics. doi:10.1016/j.aop.2014.09.020.

  • Aerts, D. (1982). Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics, 12, 1131–1170.

    Article  Google Scholar 

  • Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics, 27, 202–210.

    Article  Google Scholar 

  • Aerts, D. (1998a). The hidden measurement formalism: What can be explained and where paradoxes remain. International Journal of Theoretical Physics, 37, 291.

    Article  Google Scholar 

  • Aerts, D. (1998b). The entity and modern physics: The creation-discovery view of reality. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics. Princeton: Princeton University Press.

    Google Scholar 

  • Aerts, D. (2010). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.

    Article  Google Scholar 

  • Albert, D., & Loewer, B. (1988). Interpreting the many worlds interpretation. Synthese, 77, 195–213.

    Article  Google Scholar 

  • Baker, D. J. (2007). Measurement outcomes and probability in Everettian quantum mechanics. Studies In History and Philosophy of Science Part B: Sudies In History and Philosophy of Modern Physics, 38, 153–169.

    Article  Google Scholar 

  • Barnum, H., Caves, C. M., Finkelstein, J., Fuchs, C. A., & Schack, R. (2000). Quantum probability from decision theory? Proceedings of the Royal Society London, A456, 1175–1182.

    Article  Google Scholar 

  • Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38, 447–452.

    Article  Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of hidden variables, II. Physics Review, 85, 180–193.

    Article  Google Scholar 

  • Bohm, D. (1957). Causality and chance in modern physics. London: Routledge & Kegan Paul.

    Book  Google Scholar 

  • Born, M. (1926). Quantenmechanik der Stoßvorgänge. Z. Phys., 38, 803–827.

    Article  Google Scholar 

  • Cassinello, A., & Sánchez-Gómez, J. L. (1996). On the probabilistic postulate of quantum mechanics. Foundations of Physics, 26, 1357–1374.

    Article  Google Scholar 

  • Caves, C., & Schack, R. (2005). Properties of the frequency operator do not imply the quantum probability postulate. Annals of Physics, 315, 123–146.

    Article  Google Scholar 

  • Coecke, B. (1995). Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes. Foundations of Physics Letters, 8, 437.

    Article  Google Scholar 

  • Deutsch, D. (1996). Comment on Lockwood. British Journal for the Philosophy of Science, 47, 222–228.

    Article  Google Scholar 

  • Deutsch, D. (1998). The fabric of reality. London: Penguin Book.

    Google Scholar 

  • Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society London, A455, 3129–3137.

    Article  Google Scholar 

  • DeWitt, B., & Graham, N. (Eds.). (1973). The many-worlds interpretation of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Everett, H. (1957). Relative state formulation of quantum mechanics. Review of Modern Physics, 29, 454–462.

    Article  Google Scholar 

  • Feynman, R. P. (1992). The character of physical law. London: Penguin Books.

    Google Scholar 

  • Gell-Mann, M., & Hartle, J. (1993). Classical equations for quantum systems. Physical Review D, 47, 3345–3382.

    Article  Google Scholar 

  • Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., et al. (2011). Quantum interference of large organic molecules. Nature Communications, 2, 263.

    Article  Google Scholar 

  • Geroch, R. (1984). The Everett interpretation. Noûs, 18, 617–633.

    Article  Google Scholar 

  • Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Jounal of Mathematics and Mechanics, 6, 885–893.

    Google Scholar 

  • Gudder, S. P. (1970). On hidden-variable theories. Journal of Mathematical Physics, 11, 431–436.

    Article  Google Scholar 

  • Hartle, J. (1968). Quantum mechanics of individual systems. American Journal of Physics, 36, 704–712.

    Article  Google Scholar 

  • Jauch, J. M., & Piron, C. (1963). Can hidden variables be excluded in quantum mechanics? Helvetica Physics Acta, 36, 827–837.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Jounal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Kolmogorov, A. N. (1950). Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik (1933); translated as Foundations of Probability. New York: Chelsea Publishing Company.

  • Laplace, P. S. (1951). A philosophical essay on probabilities. New York: Dover Publications Inc., English edition 1951 (1814).

  • Lockwood, M. (1996). Many Minds’. Interpretations of quantum mechanics. British Journal for the Philosophy of Science, 47, 159–188.

    Article  Google Scholar 

  • Piron, C. (1976). Foundations of quantum physics. Reading, MA: W. A. Benjamin.

    Book  Google Scholar 

  • Sassoli de Bianchi, M. (2014). God may not play dice, but human observers surely do. Foundations of Science. doi:10.1007/s10699-014-9352-4.

  • Sassoli de Bianchi, M. (2013). Quantum dice. Annals of Physics, 336, 56–75.

    Article  Google Scholar 

  • Sassoli de Bianchi, M. (2013). Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aerts’ machine-models. Central European Journal of Physics, 11, 147–161.

    Google Scholar 

  • Sassoli de Bianchi, M. (2014). A remark on the role of indeterminism and non-locality in the violation of Bell’s inequality. Annals of Physics, 342, 133–142.

    Article  Google Scholar 

  • Saunders, S., Barrett, J., Kent, A., & Wallace, D. (Eds.). (2010). Many worlds? Quantum theory and reality. Everett: Oxford University Press.

    Google Scholar 

  • Schlosshauer, M., & Fine, A. (2005). On Zureks derivation of the born rule. Foundations of Physics, 35, 197–213.

    Article  Google Scholar 

  • Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28, 1049–1070.

    Article  Google Scholar 

  • Streater, R. F., & Wightman, A. S. (1964). PCT, spin and statistics, and all that. New York: W. A. Benjamin Inc.

    Google Scholar 

  • Von Neumann, J. (1932). Grundlehren. Math. Wiss. XXXVIII

  • von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Wallace, D. (2003). Everettian rationality. Studies in History and Philosophy of Modern Physics, 34, 87–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Sassoli de Bianchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, D., Sassoli de Bianchi, M. Many-Measurements or Many-Worlds? A Dialogue. Found Sci 20, 399–427 (2015). https://doi.org/10.1007/s10699-014-9382-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-014-9382-y

Keywords

Navigation