Skip to main content
Log in

Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Lévy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of “Cosmological Natural Selection” with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, F. C., & Laughlin, G. (1997). A dying universe: The long-term fate and evolution of astrophysical objects. Reviews of Modern Physics, 69(2), 337–372. http://arxiv.org/abs/astro-ph/9701131.

  • Aguirre, A. (2001). Cold big-bang cosmology as a counterexample to Several anthropic arguments. Physical Review D, 64(8), 83508. http://arxiv.org/abs/astro-ph/0106143.

  • Baláz, B. A. (2005). The cosmological replication cycle, the extraterrestrial paradigm and the final anthropic principle. Diotima, no. 33: 44–53. http://astro.elte.hu/~bab/seti/IACP12z.htm.

  • Barrow J. D. (2001) Cosmology, life, and the anthropic principle. Annals of the New York Academy of Sciences 950(1): 139

    Article  Google Scholar 

  • Barrow J. D., Morris S. C., Freeland S., Harper C. (2008) Fitness of the cosmos for life: Biochemistry and fine-tuning. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Barrow J. D., Tipler F. J. (1986) The anthropic cosmological principle. Oxford University Press, New York

    Google Scholar 

  • Bostrom N. (2002) Anthropic bias: Observation selection effects in science and philosophy. Routledge, New York

    Google Scholar 

  • Bostrom, N. (2003). Are you living in a computer simulation? Philosophical Quarterly, 53(211), 243–255. http://www.simulation-argument.com/simulation.pdf.

    Google Scholar 

  • Carr, B. (eds) (2007a) Universe or multiverse. Cambridge University Press, Cambridge

    Google Scholar 

  • Carr B. (2007b) The Anthropic Principle Revisited. In: Carr B. (eds) Universe or multiverse?. Cambridge University Press, Cambridge, pp 77–89

    Google Scholar 

  • Carroll S. B. (2005) Endless forms most beautiful: The new science of Evo Devo and the making of the animal kingdom. WW Norton & Company, New York

    Google Scholar 

  • Chaisson E. J. (2001) Cosmic evolution: The rise of complexity in nature. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Chaisson E. J. (2006) Epic of evolution: Seven ages of the cosmos. Columbia University Press, New York

    Google Scholar 

  • Chaitin G. J. (1974) Information-theoretic limitations of formal systems. Journal of the ACM (JACM) 21(3): 403–424

    Article  Google Scholar 

  • Chaitin G. J. (1987) Algorithmic information theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chaitin G.J. (2006) Meta math!. Atlantic Books, London

    Google Scholar 

  • Cirkovic, M. (2003). Resource letter: PEs-1: Physical eschatology. American Journal of Physics 71, 122. http://www.aob.bg.ac.yu/~mcirkovic/Cirkovic03_RESOURCE_LETTER.pdf.

  • Crane, L. (2010). Possible implications of the quantum theory of gravity: An introduction to the meduso-anthropic principle. Foundations of Science. doi:10.1007/s10699-010-9182-y. http://arxiv.org/abs/0912.5508.

  • Davies P. C. W. (1982) The accidental universe. Cambridge University Press, Cambridge

    Google Scholar 

  • Davies P. C. W. (1989) The cosmic blueprint. Touchstone Books, New York

    Google Scholar 

  • Davies P. C. W. (1998) Our place in the universe. In: Leslie J. (eds) Modern cosmology & philosophy. Prometheus Books, Amherst, pp 311–318

    Google Scholar 

  • Davies P. C. W. (2008) The goldilocks engima: Why is the universe just right for life?. Mariner Books, Boston

    Google Scholar 

  • De Duve C. (1995) Vital dust: Life as a cosmic imperative. Basic Books, New York

    Google Scholar 

  • Duff, M. J. (2002). Comment on time-variation of fundamental constants. Arxiv preprint. http://arxiv.org/abs/hep-th/0208093.

  • Duff, M. J., Okun, L. B., & Veneziano, G. (2002). Trialogue on the number of fundamental constants. Journal of High Energy Physics, 2002(3), 19. http://arxiv.org/abs/physics/0110060.

  • Ellis G. F. R. (1993) Before the beginning: Cosmology explained. Marion Boyars Publishers, London

    Google Scholar 

  • Ellis G. F. R. (2007) Multiverses: Description, uniqueness and testing. In: Carr B. (eds) Universe or Multiverse?. Cambridge University Press, Cambridge, pp 387–410

    Google Scholar 

  • Ellis, G. F. R. (2007). Issues in the philosophy of cosmology. In J. Butterfield & J. Earman (Eds.) Handbook in philosophy of physics (pp. 1183–1285). Elsevier. http://arxiv.org/abs/astro-ph/0602280.

  • Fry I. (1995) Are the different hypotheses on the emergence of life as different as they seem?. Biology and Philosophy 10(4): 389–417

    Article  Google Scholar 

  • Gardner J. N. (2000) The selfish biocosm: Complexity as cosmology. Complexity 5(3): 34–45

    Article  Google Scholar 

  • Gardner J. N. (2003) Biocosm. The new scientific theory of evolution: Intelligent life is the architect of the universe. Inner Ocean Publishing, Makawao

    Google Scholar 

  • Gentner, D., & Jeziorski, M. (1993). The shift from metaphor to analogy in Western science. Metaphor and Thought, 447. http://www.psych.northwestern.edu/psych/people/faculty/gentner/newpdfpapers/GentnerJeziorski93.pdf.

  • Gribbin J., Rees M. J. (1991) Cosmic coincidences, dark matter, mankind, and anthropic cosmology. Black Swan, London

    Google Scholar 

  • Harrison, E.R. (1995). The natural selection of universes containing intelligent life. Quarterly Journal of the Royal Astronomical Society, 36(3), 193–203. http://adsabs.harvard.edu/full/1996QJRAS..37..369B.

  • Hesse M. (1966) Models and analogies in science. Notre Dame University Press, Notre Dame, IN

    Google Scholar 

  • Hofstadter D. R. (1995) Fluid concepts & creative analogies. Basic Books, New York

    Google Scholar 

  • Hogan, C. J. (2000). Why the universe is just so. Reviews of Modern Physics, 72(4), 1149–1161. http://arxiv.org/abs/astro-ph/9909295.

  • Holyoak K. J., Thagard P. (1995) Mental leaps: Analogy in creative thought. MIT Press, Cambridge, MA

    Google Scholar 

  • Jenkins, A., & Perez, G. (2010, January). Looking for Life in the Multiverse: Universes with different physical laws might still be habitable. Scientific American.

  • Laszlo E. (1972) Introduction to systems philosophy: Toward a new paradigm of contemporary thought. Gordon & Breach Science Pub, New York

    Google Scholar 

  • Leary D. E. (1990) Metaphors in the history of psychology. Cambridge University Press, Cambridge

    Google Scholar 

  • Leibniz, G. W. (1714). Principles of nature and of grace founded on reason (Trans. M. Morris, & E. P. Dutton, 1934).

  • Leslie, J. (1989). Universes. Routledge.

  • Leslie, J. (eds) (1998) Modern cosmology & philosophy. Prometheus Books, Amherst, NY

    Google Scholar 

  • Lévy-Leblond, J. M. (1979). The importance of being (a) constant. In G. Torraldi (Ed.), Problems in the foundations of physics, Enrico Fermi School LXXII (p. 237), North Holland.

  • Lloyd S. (2005) Programming the universe: A quantum computer scientist takes on the cosmos. Vintage Books, New York

    Google Scholar 

  • Martin, M. (2006). The mocking memes: A basis for automated intelligence. AuthorHouse. Published under pseudonym Evan Louis Sheehan, http://evanlouissheehan.home.comcast.net/~evanlouissheehan/TheMockingMemes.pdf.

  • Minsky M. (1986) The society of mind. Simon & Schuster Inc., New York, NY

    Google Scholar 

  • Neumann, J. (1951). The general and logical theory of automata. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior: The Hixon symposium. http://crl.ucsd.edu/~elman/Courses/cog202/Papers/vonneumann.pdf.

  • Nottale, L. (2003). Scale-Relativistic Cosmology. Chaos, Solitons and Fractals 16, no. 4: 539-564. http://luth2.obspm.fr/~luthier/nottale/arScRCosmo.pdf.

  • Nottale, L. (2010). Scale relativity and fractal space-time: Theory and applications. Foundations of Science, 15(2), 101–152. doi:10.1007/s10699-010-9170-2. http://arxiv.org/abs/0912.5508.

  • Paley, W. (1802). Natural theology. Oxford University Press, 2006, USA. http://www.theapologiaproject.org/NATURAL%20THEOLOGY.pdf.

  • Rees M. (2000) Just six numbers: The deep forces that shape the universe. Basic Books, New York

    Google Scholar 

  • Rescher N. (2000) The price of an ultimate theory. Philosophia Naturalis 37(1): 1–20

    Google Scholar 

  • Rozental I. L. (1980) Physical laws and the numerical values of fundamental constants. Soviet Physics Uspekhi 23(6): 296–305

    Article  Google Scholar 

  • Smart, J. (2008). Evo devo universe? A framework for speculations on cosmic culture. In S. J. Dick & M. L. Lupisella (Eds.), Cosmos and culture: Cultural evolution in a cosmic context (pp. 201–295). http://accelerating.org/downloads/SmartEvoDevoUniv2008.pdf.

  • Smolin L. (1992) Did the universe evolve?. Classical and Quantum Gravity 9(1): 173–191

    Article  Google Scholar 

  • Smolin L. (1997) The life of the cosmos. Oxford University Press, USA

    Google Scholar 

  • Smolin, L. (2007). Scientific alternatives to the anthropic principle. In B. Carr (Ed.), Universe of multiverse? (pp. 323–366). Cambridge University Press. http://arxiv.org/abs/hep-th/0407213.

  • Stenger V. J. (1995) The unconscious quantum metaphysics in modern physics and cosmology. Prometheus Books, Amherst, NY

    Google Scholar 

  • Stenger V. J. (2000) Natural Explanations for the Anthropic Coincidences. Philo 3(2): 50–67

    Google Scholar 

  • Stewart, J. (2010). The meaning of life in a developing universe. Foundations of Science, doi:10.1007/s10699-010-9184-9. http://arxiv.org/abs/0912.5508.

  • Susskind L. (2006) The cosmic landscape: String theory and the illusion of intelligent design. Back Bay Books, New York

    Google Scholar 

  • Tegmark M., Aguirre A., Rees M. J., Wilczek F. (2006) Dimensionless constants, cosmology, and other dark matters. Physical Review D 73(2): 23505

    Article  Google Scholar 

  • Vaas, R. (1998). Is there a Darwinian evolution of the cosmos?—some comments on Lee Smolin’s theory of the origin of universes by means of natural selection. MicroCosmos–MacroCosmos conference in Aachen, Germany, September 2–5 1998; finished in late 1998 and published in the conference proceedings. http://arxiv.org/abs/gr-qc/0205119.

  • Vidal, C. (2007). An enduring philosophical agenda. Worldview Construction as a Philosophical Method. Submitted for publication. http://cogprints.org/6048/.

  • Vidal, C. (2008). The future of scientific simulations: From artificial life to artificial cosmogenesis. In C. Tandy (Ed.), Death and anti-death (Vol. 6): Thirty years after Kurt Gödel (1906–1978) (Vol. 6, pp. 285–318). Ria University Press. http://arxiv.org/abs/0803.1087.

  • Vidal, C. (2009). Metaphilosophical criteria for worldview comparison. Working Paper. http://homepages.vub.ac.be/~clvidal/writings/Vidal2009-Metaphilosophical-Criteria.pdf.

  • Wikipedia Contributors. (2008). Kolmogorov complexity. In Wikipedia, the free encyclopedia. Wikimedia Foundation, August 11. http://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=231230603.

  • Wilczek, F. (1999). Quantum field theory. Reviews of Modern Physics, 71(2), 85–95. http://arxiv.org/abs/hep-th/9803075.

  • Wolfram S. (2002) A new kind of science. Wolfram Media Inc. Champaign, IL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, C. Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics. Found Sci 15, 375–393 (2010). https://doi.org/10.1007/s10699-010-9183-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9183-x

Keywords

Navigation