Skip to main content
Log in

Application of Quantum Darwinism to Cosmic Inflation: An Example of the Limits Imposed in Aristotelian Logic by Information-based Approach to Gödel’s Incompleteness

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Gödel’s incompleteness applies to any system with recursively enumerable axioms and rules of inference. Chaitin’s approach to Gödel’s incompleteness relates the incompleteness to the amount of information contained in the axioms. Zurek’s quantum Darwinism attempts the physical description of the universe using information as one of its major components. The capacity of quantum Darwinism to describe quantum measurement in great detail without requiring ad-hoc non-unitary evolution makes it a good candidate for describing the transition from quantum to classical. A baby-universe diffusion model of cosmic inflation is analyzed using quantum Darwinism. In this model cosmic inflation can be approximated as Brownian motion of a quantum field, and quantum Darwinism implies that molecular interaction during Brownian motion will make the quantum field decohere. The quantum Darwinism approach to decoherence in the baby-universe cosmic-inflation model yields the decoherence times of the baby-universes. The result is the equation relating the baby-universe’s decoherence time with the Hubble parameter, and that the decoherence time is considerably shorter than the cosmic inflation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananthaswamy A. (2008) Quantum darwinism. The foundational questions inst. News 7: 1–3

    Google Scholar 

  • Borde A., Guth A. H., Vilenkin A. (2003) Inflationary spacetimes are incomplete in past directions. Physical Review Letter 90: 151301–151304

    Article  Google Scholar 

  • Burgess C. P., Holman R., Hoover D. (2008) On the decoherence of primordial fluctuations during inflation. Physics Review D 77: 063534–063548

    Article  Google Scholar 

  • Calzetta E., Verdaguer E. (2006) Real time approach to tunneling in open quantum systems: Decoherence and anomalous diffusion. Journal of Physics A 39: 9503–9532

    Article  Google Scholar 

  • Chaitin G. J. (2005) Meta math!. Random House, New York

    Google Scholar 

  • Gibbons G. W., Hawking S. W. (1977) Action integrals and partition functions in quantum gravity. Physical Review D 15: 2752–2756

    Article  Google Scholar 

  • Gödel K. (1931) Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38: 173–198

    Article  Google Scholar 

  • Guth A. H. (1981) Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D 23: 347–356

    Article  Google Scholar 

  • Hu, B. L., Paz, J. P., & Zhang, Y. (1995). Quantum origin of noise and fluctuations in cosmology. gr-qc/9512049, 1–32.

  • Kiefer C., Lohmar I., Polarski D., Starobinsky A. A. (2007) Pointer states for primordial fluctuations in inflationary cosmology. Classical Quantum Gravity 24: 1699–1718

    Article  Google Scholar 

  • Linde A. (2005) Particle physics and inflationary cosmology. Contemporary Concepts of Physics 5: 1–362

    Google Scholar 

  • Lombardo F. C. (2005) Influence functional approach to decoherence during Inflation. Brazilian Journal of Physics 35: 391–396

    Article  Google Scholar 

  • Lombardo F. C., Mazzitelli F. D., Rivers R. J. (2003) Decoherence in field theory: General couplings and slow quenches. Nuclear Physics A 672: 462–486

    Article  Google Scholar 

  • Martineau F. (2007) On the decoherence of primordial fluctuations during inflation. Classical Quantum of Gravity 24: 5817–5834

    Article  Google Scholar 

  • McQuarrie D.A. (1975) Statistical mechanics. Harper & Row, New York

    Google Scholar 

  • Panikkar R. (1989) The silence of God: The answer of the Buddha. Orbis Books, Maryknoll, NY

    Google Scholar 

  • Rovelli C. (2004) Quantum gravity. Cambridge University Press, Cambridge

    Google Scholar 

  • Smolin L. (2002) Three roads to quantum gravity. Perseus Books Group, New York

    Google Scholar 

  • Von Neumann J. (1955) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Wheeler, J. A. (1990) Information, physics, quantum: The search for links. Physics Department, University of Texas.

  • Zurek W.H. (2002) Decoherence and the transition from quantum to classical—revisited. Los Alamos Science 27: 86–109

    Google Scholar 

  • Zurek, W. H. (2003a). Quantum darwinism and envariance. quant-ph/0308163v1, 1–17.

  • Zurek W. H. (2003b) Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75: 715–775

    Article  Google Scholar 

  • Zurek W. H. (2005) Probabilities from entanglement, Born’s rule p k  = |Ψ k |2 from envariance. Physical Review A 71: 052105–052133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás F. Lori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lori, N.F., Blin, A.H. Application of Quantum Darwinism to Cosmic Inflation: An Example of the Limits Imposed in Aristotelian Logic by Information-based Approach to Gödel’s Incompleteness. Found Sci 15, 199–211 (2010). https://doi.org/10.1007/s10699-010-9174-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9174-y

Keywords

Navigation