Skip to main content
Log in

Mathematical Arguments in Context

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Except in very poor mathematical contexts, mathematical arguments do not stand in isolation of other mathematical arguments. Rather, they form trains of formal and informal arguments, adding up to interconnected theorems, theories and eventually entire fields. This paper critically comments on some common views on the relation between formal and informal mathematical arguments, most particularly applications of Toulmin’s argumentation model, and launches a number of alternative ideas of presentation inviting the contextualization of pieces of mathematical reasoning within encompassing bodies of explicit and implicit, formal and informal background knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberdein A. (2006) Managing informal mathematical knowledge: Techniques from informal logic. Lecture Notes in Artificial Intelligence 108: 208–221

    Google Scholar 

  • Aberdein A. (2007) The informal logic of mathematical proof. In: Van Kerkhove B., Van Bendegem J.P.(eds) Perspectives on mathematical practices. Springer, Dordrecht, pp 135–151

    Chapter  Google Scholar 

  • Aigner M., Ziegler G.M. (1998) Proofs from the book. Springer, New York

    Google Scholar 

  • Aschbacher M. (2004) The status of the classification of the finite simple groups. Notices of the AMS 51(7): 736–740

    Google Scholar 

  • Cipra, B. (1996). What’s happening in the mathematical sciences. Vol. 3. American Mathematical Society, Providence, RI.

  • Davis P.J. (1972) Fidelity in mathematical discourse: Is one and one really two?. American Mathematical Monthly 79(3): 252–263

    Article  Google Scholar 

  • Kline, M. (1990). Mathematical thought from ancient to modern times. New York: Oxford University Press. (Three volumes, second printing of the 1972 original edition.)

  • Kolodziejczyk L., Thapen N. (2008) The polynomial and linear hierarchies in models where the weak pigeonhole principle fails. The Journal of Symbolic Logic 73(2): 578–592

    Article  Google Scholar 

  • Lamé G. (1839) Mémoire sur le Dernier Théorème de Fermat. Comptes Rendus de l’Académie des Sciences 9: 45–46

    Google Scholar 

  • Nelsen R.B. (1993) Proofs without words. Exercises in visual thinking. Washington DC, The Mathematical Association of America

    Google Scholar 

  • Nelsen R.B. (2000) Proofs without words II. More exercises in visual thinking. Washington DC, The Mathematical Association of America

    Google Scholar 

  • Netz R. (1999) The shaping of deduction in Greek mathematics. A study in cognitive history. Cambridge University Press, Cambridge

    Google Scholar 

  • Otte M., Panza M. (1997). Analysis and synthesis in mathematics: History and philosophy. Dordrecht, Kluwer Academic Publishers

  • Pólya G. (1919) Verschiedene Bemerkungen zur Zahlentheorie. Jahresbericht der deutschen Math.- Vereinigung 28: 31–40

    Google Scholar 

  • Pólya, G. (1973). Mathematics and plausible reasoning. Vol. I: Induction and analogy in mathematics. Princeton, NJ: Princeton University Press. (eighth printing of the 1954 original).

  • Queneau, R. (1978). Bords. Mathématiciens. Précurseurs. Encyclopédistes. Paris: Hermann. (first edition 1963).

  • Rotman B. (2000) Mathematics as sign. Writing, imagining, counting. Stanford University Press, Stanford

    Google Scholar 

  • Solomon R. (1995) On finite simple groups and their classification. Notices of the AMS 42(2): 231–239

    Google Scholar 

  • Solomon R. (2001) A brief history of the classification of the finite simple groups. Bulletin (New Series) of the AMS 38(3): 315–352

    Article  Google Scholar 

  • Thomas R. (2000) Mathematics and fiction I: Identification. Logique et Analyse 43: 301–340

    Google Scholar 

  • Thomas R. (2002) Mathematics and fiction II: Analogy. Logique et Analyse 45: 185–228

    Google Scholar 

  • Thurston W.P. (1994) On proof and progress in mathematics. Bulletin (New Series) of the AMS 30(2): 161–177

    Article  Google Scholar 

  • Van Bendegem, J. P. (To appear I). Elements for a rhetoric of mathematics: How proofs can be convincing. In C. Dègremont, L. Keiff, & H. Rückert (Eds.), Festschrift in honour of Shahid Rahman, London: College Publications.

  • Van Bendegem, J. P. (To appear II). ‘What-if’ stories in mathematics: An alternative route to complex numbers. In M. Khissine et al. (Eds.), Liber amicorum Marc Dominicy.

  • Van Kerkhove B., &Van Bendegem J.P. (2008) Pi on earth, or mathematics in the real world. Erkenntnis 68(3): 421–435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart Van Kerkhove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Bendegem, J.P., Van Kerkhove, B. Mathematical Arguments in Context. Found Sci 14, 45–57 (2009). https://doi.org/10.1007/s10699-008-9146-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-008-9146-7

Keywords

Navigation