Skip to main content
Log in

On a quest of reverse translation

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

All action is cognition and all cognition is an action.

(Humberto R. Maturana and Francisco J. Varela).

Abstract

Explaining the emergence of life is perhaps central and the most challenging question in modern science. Within this area of research, the emergence and evolution of the genetic code is supposed to be a critical transition in the evolution of modern organisms. The canonical genetic code is one of the most dominant aspects of life on this planet, and thus studying its origin is critical to understanding the evolution of life, including life’s emergence. In this sense it is possible to view the ribosome as a digital-to-analogue information converter. Why the translation apparatus evolved, is one of the enduring mysteries of molecular biology. Assuming the hypothesis that during the emergence of life evolution had to first involve autocatalytic systems, which only subsequently acquired the capacity of genetic heredity, in the present article we discuss some aspects and causes of the possible emergence of digital, discrete information arising from analogue information realized in the intra- and inter-molecular interactions throughout molecular evolution. How such reverse translation was achieved at a molecular level is still unclear. The results of such debates and investigations might shift current biological paradigms and might also have a momentous significance for modern philosophy in understanding our place in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adami, C.: What is complexity? BioEssays 24(12), 1085–1094 (2002)

    Article  Google Scholar 

  • Adami, C.: Information-theoretic considerations concerning the origin of life. Orig. Life Evol. Biosph. (2015). doi:10.1007/s11084-015-9439-0

    Google Scholar 

  • Annila, A., Baverstock, K.: Genes without prominence: a reappraisal of the foundations of biology. J. R. Soc. Interface 11, 20131017 (2014). doi:10.1098/rsif.2013.1017

    Article  Google Scholar 

  • Annila, A., Kolehmainen, E.: On the divide between animate and inanimate. J. Syst. Chem. 6, 2 (2015). doi:10.1186/s13322-015-0008-8

    Article  Google Scholar 

  • Annila, A., Kuismanen, E.: Natural hierarchy emerges from energy dispersal. BioSystems 95, 227–233 (2009)

    Article  Google Scholar 

  • Baverstock, K., Rönkkö, M.: Epigenetic regulation of the mammalian cell. PLoS One 3, e2290 (2008). doi:10.1371/journal.pone.0002290

    Article  Google Scholar 

  • Baverstock, K.: Life as physics and chemistry: a system view of biology. Prog. Biophys. Mol. Biol. 111, 108–115 (2013). doi:10.1016/j.pbiomolbio.2012.09.002

    Article  Google Scholar 

  • Baymann, F., Lebrun, E., Brugna, M., Schoepp-Cothenet, B., Guidici-Oritconi, M.T., Nitschke, W.: The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Phil. Trans. R. Soc. Lond. B 358, 267–274 (2003). doi:10.1098/rstb.2002.1184

    Article  Google Scholar 

  • Bowman, J.C., Hud, N.V., Williams, L.D.: The ribosome challenge to the RNA world. J. Mol. Evol. (2015). doi:10.1007/s00239-015-9669-9

    Google Scholar 

  • Brack, A.: From interstellar amino acids to prebiotic catalytic peptides: a review. Chem. Biodivers. 4, 665–679 (2007)

    Article  Google Scholar 

  • Cafferty, B.J., Fialho, D.M., Khanam, J., Krishnamurthy, R., Hud, N.V.: Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat. Commun. 7, 11328 (2016). doi:10.1038/ncomms11328

    Article  Google Scholar 

  • Chen, I.A., Nowak, M.A.: From prelife to life: how chemical kinetics become evolutionary dynamics. Acc. Chem. Res. 45(12), 2088–2096 (2012)

    Article  Google Scholar 

  • Chiarabelli, C, Stano, P. and Luisi, P.L. Chemical synthetic biology. Frontiers in Microbiology 4 (Article 285), 1–7 (2013)

  • Copley, S.D., Smith, E., Morowitz, H.J.: The origin of the RNA world: co-evolution of genes and metabolism. Bioorg. Chem. 35, 430–443 (2007)

    Article  Google Scholar 

  • Cronin, L., Walker, S.I.: Beyond prebiotic chemistry. What dynamic network properties allow the emergence of life? Science 352(6290), 1174–1175 (2016)

    Article  Google Scholar 

  • Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1978)

    Google Scholar 

  • Deamer, D.: First life, and next life. synthetic biology is a new field, but it’s centered on an old question: how did life begin? Technol. Rev. 112(3), 66–73 (2009)

    Google Scholar 

  • de Duve, C.: Clues from present-day biology: the tioester world. In: Brack, A. (ed.) The Molecular Origins of Life, pp. 219–236. Cambridge University Press, Cambridge (1998)

    Chapter  Google Scholar 

  • Degtyarenko, K.: Structural domains of P450-containing monooxygenase systems. Protein Eng. 8(8), 737–747 (1995)

    Article  Google Scholar 

  • Dennett, D.C.: Darwin’s Dangerous Idea, Evolution and the Meanings of the Life, p. 62. Penguin Books, London (1995)

    Google Scholar 

  • Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 30, 177–182 (2006)

    Article  Google Scholar 

  • Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K.: Beyond the second law: entropy production and non-equilibrium systems. Springer, Berlin (2014)

    Book  Google Scholar 

  • Dobovišek, A., Županović, P., Brumen, M., Bonaćić-Lošić, Ž., Kuić, D., Juretić, D.: Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)

    Article  Google Scholar 

  • Dobovišek, A., Županović, P., Brumen, M., Juretić, D.: Maximum entropy production and maximum Shannon entropy as germane principles for the evolution of enzyme kinetics. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the second law: entropy production and non-equilibrium systems, pp. 361–382. Springer, Berlin (2014)

    Chapter  Google Scholar 

  • Ducluzeau, A.L., Schoepp-Cothenet, B., van Lis, R., Baymann, F., Russell, M.J., Nitschke, W.: The evolution of respiratory O2/NO reductases: an out-of-the-phylogeneticbox perspective. J. R. Soc. Interface 11, 20140196 (2014). doi:10.1098/rsif.2014.0196

    Article  Google Scholar 

  • Egel, R.: On the misgivings of anthropomorphic consensus polling in defining the complexity of life. J. Biomol. Struct. Dyn. 29(4), 615–616 (2012)

    Article  Google Scholar 

  • Eschenmoser, A.: Vitamin B12: experiments concerning the origin of its molecular structure. Angew. Chem. Int. Ed. Engl. 27(1), 5–39 (1988)

    Article  Google Scholar 

  • Fox, G.E.: Origin and evolution of the ribosome. Cold Spring Harbor Perspect. Biol. (2010). doi:10.1101/cshperspect.a003483

    Google Scholar 

  • Gallo, V., Stano, P., Luisi, P.L.: Protein synthesis in sub-micrometer water-in-oil droplets. ChemBioChem 16, 2073–2079 (2015). doi:10.1002/cbic.201500274

    Article  Google Scholar 

  • Gardner, P.P., Fasold, M., Burge, S.W., Ninova, M., Hertel, J., Kehr, S., Steeves, T.E., Griffiths-Jones, S., Stadler, P.F.: Conservation and losses of non-coding RNAs in avian genomes. PLoS One 10(3), e0121797 (2015). doi:10.1371/journal.pone.01217972015

    Article  Google Scholar 

  • Gevers, W., Kleinkauf, H., Lipmann, F.: Peptdyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. USA. 63, 1335–1342 (1969)

    Article  Google Scholar 

  • Goodwin, J.T., Mehta, A.K., Lynn, D.G.: Digital and analog chemical evolution. Acc. Chem. Res. 45(12), 2189–2199 (2012). doi:10.1021/ar300214w

    Article  Google Scholar 

  • Goodwin, J.T., Lynn, D.G., Burrows, C., Walker, S., Amin, S. and Armbrust, E.V. Alternative chemistries of life, empirical approaches. In: Goodwin, J.T. and Lynn, D.G. (eds.) A report from a workshop on alternative chemistries of life: empirical approaches. http://alternativechemistries.emory.edu/report_summary/index.html (2014) Accessed 24 Oct 2014

  • Gordon-Smith, C. Non-template molecules designed for open-ended evolution. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgin, P., Dorigo, M. and Doursat, R. (eds.) Advances in artificial life ECAL 2011, Proceedings of the eleventh european conference on the synthesis and simulation of living systems, pp. 268–275. Massachusetts Institute of Technology USA (2011)

  • Groves, J.T.: The importance to be selective. Nature 389, 329–330 (1997)

    Article  Google Scholar 

  • Hall, D.O., Cammack, R., Rao, K.K.: Role for ferredoxins in the origin of life and biological evolution. Nature 233, 136–138 (1971)

    Article  Google Scholar 

  • Hall, P.F.: Cytochromes P450 and the regulation of steroid synthesis. Steroids 48, 131–196 (1986)

    Article  Google Scholar 

  • Herrmann Pillath, C. Revisiting the gaia hypothesis: maximum entropy, Kauffmans fourth law and physiosemeiosis. Frankfurt School working paper series 160, Frankfurt am Main: Frankfurt School of Finance and Management (2011)

  • Higgs, P.G., Lehman, N.: The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genet. AOP (2014). doi:10.1038/nrg3841

    Google Scholar 

  • Hodgson, G.W., Ponnamperuma, C.: Prebiotic porphyrin genesis: porphyrins from electric discharge in methane, ammonia and water vapor. Proc. Natl. Acad. Sci. USA. 59, 22–28 (1968). doi:10.1073/pnas.59.1.22

    Article  Google Scholar 

  • Hordijk, W., Steel, M., Kauffman, S.: The structure of autocatalytic sets: evolvability, enablement, and emergence. Acta Biotheor. 60, 379–392 (2012). doi:10.1007/s10441-012-9165-1

    Article  Google Scholar 

  • Hsiao, C., Mohan, S., Kalahar, B.K., Williams, L.D.: Peeling the onion: ribosomes are ancient molecular fossils. Mol. Biol. Evol. 26(11), 2415–2425 (2009). doi:10.1093/molbev/msp163

    Article  Google Scholar 

  • Hsiao, C., Williams, L.D.: A recurrent magnesium-binding motif provides a framework for ribosomal peptidyl transferase center. Nucl. Acids Res. 37(10), 3134–3142 (2009). doi:10.1093/nar/gkp119

    Article  Google Scholar 

  • Ivica, N.A., Obermayer, B., Campbell, G.W., Rajamani, S., Gerland, U., Chen, I.A.: The paradox of dual roles in the RNA world: resolving the conflict between stable folding and templating ability. J. Mol. Evol. (2013). doi:10.1007/s00239-013-9584-x

    Google Scholar 

  • Jadhav, V.R., Yarus, M.: Coenzymes as coribozymes. Biochimie 84, 877–888 (2002)

    Article  Google Scholar 

  • Jahn, D., Moser, J., Schubert, W.D., Heinz, D.W.: Transfer RNA-dependent aminolevulinic acid formation: structure and function of glutamyl-trna synthetase, reductase and glutamate-1-semialdehyde-2,1-aminomutase. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds.) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, pp. 159–171. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Jeffares, D.C., Poole, A.M., Penny, D.: Relics from the RNA world. J. Mol. Evol. 46(1), 18–26 (1998). doi:10.1007/PL00006280. (PMID: 9419222)

    Article  Google Scholar 

  • Johnson, D.B.F., Wang, L.: Imprints of the genetic code in the ribosome. PNAS 107(18), 8298–8303 (2010). doi:10.1073/pnas.1000704107

    Article  Google Scholar 

  • Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 27, 541–553 (2003)

    Article  Google Scholar 

  • Kappler, A., Emerson, D., Gralnick, J.A., Roden, E.E., Muehe, E.M.: Geomicrobiology of iron. In: Ehrlich, H.L., Newman, D.K., Kappler, A. (eds.) Geomicrobiology, 6th edn. CRC Press, Boca Raton (2015)

    Google Scholar 

  • Kelly, S.L., Kelly, D.E.: Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Phil. Trans. R. Soc. B. 368, 20120476 (2013). doi:10.1098/rstb.2012.0476

    Article  Google Scholar 

  • Kleidon, A.: Life, hierarchy, and the thermodynamic machinery of planet earth. Phys. Life Rev. 7, 424–460 (2010)

    Article  Google Scholar 

  • Kleinkauf, H., von Dören, H.: Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem. 192, 1–15 (1990)

    Article  Google Scholar 

  • Kleinkauf, H., von Dören, H.: A nonribosomal system of peptide biosynthesis. Eur. J. Biochem. 236, 335–351 (1996)

    Article  Google Scholar 

  • Knight, R. Reviewers’ comments: Wolf, Y.I. and Koonin, E.V. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, and subfunctionalization. Biol. Dir. 2, 14 (2007)

  • Kurland, C.G.: The RNA dreamtime. BioEssays 32, 866–871 (2010)

    Article  Google Scholar 

  • Lane, N., Martin, W.F.: The origin of membrane bioenergetics. Cell 151, 1406–1416 (2012). doi:10.1016/j.cell.2012.11.050

    Article  Google Scholar 

  • Laubichler, M.D., Stadler, P.F., Prohaska, S.J., Nowick, K.: The relativity of biological function. Theo. Biosci. (2015). doi:10.1007/s12064-015-0215-5

    Google Scholar 

  • Lewis, D.F.V., Watson, E., Lake, B.G.: Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics. Mutat. Res. 410, 245–270 (1998)

    Article  Google Scholar 

  • Luisi, P.L., Stano, P., de Souza, T.: Spontaneous overcrowding in liposomes as possible origin of metabolism. Orig. Life Evol. Biosph. (2015). doi:10.1007/s11084-014-9387-0

    Google Scholar 

  • Lynn, D., Burrows, C., Goodwin, J., Mehta, A.: Origins of chemical evolution. Acc. Chem. Res. 45(12), 2023–2024 (2012)

    Article  Google Scholar 

  • Martin, W., Russell, M.J.: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B 358, 59–85 (2003). doi:10.1098/rstb.2002.1183

    Article  Google Scholar 

  • Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)

    Article  Google Scholar 

  • Martyushev, L.M.: The maximum entropy production principle: two basic questions. Phil. Trans. R. Soc. B 365, 1333–1334 (2010)

    Article  Google Scholar 

  • Martjushev, L.M.: Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15, 1152–1170 (2013)

    Article  Google Scholar 

  • Martyushev, L.M., Seleznev, V.D.: The restrictions of the maximum entropy production principle. Phys. A 410, 17–21 (2014)

    Article  Google Scholar 

  • Maynard Smith, J., Szathmáry, E.: The Major Evolutionary Transitions, pp. 3–8. W.H. Freeman Spectrum, Oxford (1995)

    Google Scholar 

  • Melton, D.E., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A.: The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014)

    Article  Google Scholar 

  • Michaelian, K. and Simeonov, A. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum. Biogeosciences 12, 4913–4937 (2015) www.biogeosciences.net/12/4913/2015/. doi: 10.5194/bg-12-4913-2015

  • Milner-White, E.J., Russell, M.J.: Predicting peptide and protein conformations in early evolution. Biol. Dir. 3, 3 (2008). doi:10.1186/1745-6150-3-3

    Article  Google Scholar 

  • Milner-White, E.J., Russell, M.J.: Functional capabilities of the earliest peptides and the emergence of life. Genes 2, 671–688 (2011). doi:10.3390/genes2040671

    Article  Google Scholar 

  • Montanini, B., Yang Chen, P., Morselli, M., Jaroszewicz, A., Lopez, D., Martin, F. Ottonello, S., and Pellegrini, M. Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol. 15, 411 (2014). http://genomebiology.com/2014/15/7/411

  • Murphy, M.P., O’Neill, L.A.J.: What is Life? The next fifty years. An introduction. In: Murphy, M.P., O’ Neill, L.A.J. (eds.) What is Life? The next fifty years, pp. 1–4. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Mushegian, A.: Gene content of LUCA, the last universal common ancestor. Front. Biosci. 13, 4657–4666 (2008)

    Article  Google Scholar 

  • Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C., Gotoh, O., Okuda, K., Nebert, D.W.: The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 12, 1–51 (1993)

    Article  Google Scholar 

  • Nelson, D.R., Goldstone, J.V., Stegeman, J.J.: The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Phil. Trans. R. Soc. B. 368, 20120474 (2013). doi:10.1098/rstb.2012.0474

    Article  Google Scholar 

  • Nitschke, W., McGlynn, S.E., Milner-White, E.J., Russell, M.J.: On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta 1827, 871–881 (2013). doi:10.1016/j.bbabio.2013.02.008

    Article  Google Scholar 

  • Oda, A., Fukuyoshi, S.: Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine. Orig. Life Evol. Biosph. 45, 183–193 (2015). doi:10.1007/s11084-015-9418-5

    Article  Google Scholar 

  • Olson, M.V.: Molecular evolution ‘when less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet. 64, 18–23 (1999)

    Article  Google Scholar 

  • Petrov, A.S., Bernier, C.R., Hsiao, C., Norris, A.M., Kovacs, N.A., Waterbury, C.C., Stepanov, V.G., Harvey, S.C., Fox, G.E., Wartell, R.M., Hud, N.V., Williams, L.D.: Evolution of the ribosome at atomic resolution. PNAS 111(28), 10251–10256 (2014). doi:10.1073/pnas.1407205111

    Article  Google Scholar 

  • Pressman, A., Blanco, C., Chen, I.A.: The RNA world as a model system to study the origin of life. Curr. Biol. 25, R953–R963 (2015)

    Article  Google Scholar 

  • Pross, A.: Causation and the origin of life. Metabolism or replication first? Orig. Life Evol. Biosph. 34, 307–321 (2004)

    Article  Google Scholar 

  • Qian, H.: Open-system nonequilibrium steady-state: statistical thermodynamics, fluctuations and chemical oscillations. J. Phys. Chem. B 110(15063–15074), 1021 (2006). doi:10.1021/jp061858z

    Google Scholar 

  • Qian, H.: Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007). doi:10.1146/annurev.physchem.58.032806.104550

    Article  Google Scholar 

  • Raffaelli, N.: Nicotinamide coenzyme synthesis: a case of ribonucleotide emergence or a byproduct of the RNA world? In: Egel, R. (ed.) Origins of life: the primal self-organization editor, pp. 185–208. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Rojas-Benitez, D., Thiaville, P.C., Crécy-Lagard, V.C., Glavic, A.: The levels of a universally conserved tRNA modification regulate cell growth. J. Biol. Chem. 290(30), 18699–18707 (2015)

    Article  Google Scholar 

  • Root-Bernstein, M., Root-Bernstein, R.: The ribosome as a missing link in the evolution of life. J. Theor. Biol. 367, 130–158 (2015)

    Article  Google Scholar 

  • Russell, M.J., Daniel, R.M., Hall, A.J., Sherringham, J.: A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231–243 (1994)

    Article  Google Scholar 

  • Russell, M.J., Hall, A.J.: The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377–402 (1997)

    Article  Google Scholar 

  • Russell, M.J., Nitschke, W., Branscomb, E.: The inevitable journey to being. Phil. Trans. R. Soc. B 368, 20120254 (2013). doi:10.1098/rstb.2012.0254

    Article  Google Scholar 

  • Scharf, C., Virgo, N., Cleaves II, J., Aono, M., Aubert-Kato, N., Aydinoglu, A., Barahona, A., Barge, L.M., Benner, S.A., Biehl, M., Brasser, R., Butch, C.J., Chandru, K., Cronin, L., Danielache, S., Fischer, J., Hernlund, J., Hut, P., Ikegami, T., Kimura, J., Kobayashi, K., Mariscal, C., Mc Glynn, S., Menard, B., Packard, N., Pascal, R., Pereto, J., Rajamani, S., Sinapyen, L., Smith, E., Switzer, C., Takai, K., Tian, F., Ueno, Y., Voytek, M., Witkowski, O., Yabuta, H.: A strategy for origins of life research. Astrobiology 15(12), 1031–1042 (2015). doi:10.1089/ast.2015.1113

    Article  Google Scholar 

  • Schimmel, P.: Development of tRNA synthetases and connection to genetic code and disease. Protein Sci. 17, 1643–1652 (2008)

    Article  Google Scholar 

  • Shapiro, J.A.: The basic concept of the read-write genome: mini-review on cell-mediated DNA modification. Biosystems 140, 35–37 (2016). doi:10.1016/j.biosystems.2015.11.003

    Article  Google Scholar 

  • Shapiro, R.: A replicator was not involved in the origin of life. IUBMB Life 49, 173–176 (2000)

    Article  Google Scholar 

  • Shapiro, R.: A simpler origin for life. Sci. Am. 296(6), 46–53 (2007)

    Article  Google Scholar 

  • Sharov, A.A.: Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int. J. Mol. Sci. 10, 1838–1852 (2009). doi:10.3390/ijms10041838

    Article  Google Scholar 

  • Sharov, A.A.: Coenzyme world model of the origin of life. BioSystems 144, 8–17 (2016)

    Article  Google Scholar 

  • Simionescu, C.I., Simionescu, B.C., Mora, R., Leancâ, M.: Porphyrin-like compounds genesis under simulated abiotic conditions. Orig. Life 9, 103–114 (1978). doi:10.1007/BF00931408

    Article  Google Scholar 

  • Smith, J.E., Mowles, A.K., Mehta, A.K., Lynn, D.G.: Looked at life from both sides now. Life 4, 887–902 (2014). doi:10.3390/life4040887

    Article  Google Scholar 

  • Sousa, F.L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I.A., Allen, J.F., Lane, N., Martin, W.F.: Early bioenergetic evolution. Phil. Trans. R. Soc. B 368, 20130088 (2013). doi:10.1098/rstb.2013.0088

    Article  Google Scholar 

  • Sousa, F.L., Hordijk, W., Steel, M., Martin, W.F.: Autocatalytic sets in E. coli metabolism. J. Syst. Chem. 6, 4 (2015). doi:10.1186/s13322-015-0009-7

    Article  Google Scholar 

  • Stryer, L.: Biochemistry, 3rd edn, p. 409. W.H. Freeman and Co., New York (1988a)

    Google Scholar 

  • Stryer, L.: Biochemistry, 3rd edn, p. 323. W.H. Freeman and Co., New York (1988b)

    Google Scholar 

  • Su, F., Takaya, N., Shoun, H.: Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor. Biosci. Biotechnol. Biochem. 68(2), 473–475 (2004)

    Article  Google Scholar 

  • Szathmáry, E., Maynard Smith, J.: The major evolutionary transitions. Nature 374, 227–232 (1995)

    Article  Google Scholar 

  • Szathmáry, E.: Toward major evolutionary transitions theory 2.0. PNAS Early Ed. (2015). doi:10.1073/pnas.1421398112

    Google Scholar 

  • Tessera, M.: Origin of evolution versus origin of life: a shift of paradigm. Int. J. Mol. Sci. 12, 3445–3458 (2011). doi:10.3390/ijms12063445

    Article  Google Scholar 

  • Tessera, M.: Is A n+1 definition of life useful? J. Biomol. Struct. Dyn. 29(4), 635–636 (2012)

    Article  Google Scholar 

  • Toporkova, Y.Y., Mukhtarova, L.S., Gogolev, Y.V., Grechkin, A.N.: Origins of the diversity of cytochrome P450 CYP74 family based on the results of site-directed mutagenesis. Mosc. Univ. Biol. Sci. Bull. 65(4), 155–157 (2010)

    Article  Google Scholar 

  • Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface 6, 925–940 (2009)

    Article  Google Scholar 

  • Villarreal, L.P., Witzany, G.: When competing viruses unify: evolution, conservation, and plasticity of genetic identities. J. Mol. Evol. (2015). doi:10.1007/s00239-015-9683-y

    Google Scholar 

  • Vitas, M. On the Theory of species evolution through natural selection; Original Title: O teoriji razvoja vrst a pomočjo naravne selekcije. Apokalipsa: revija za preboj v živo kulturo 152, 113–122 (2011) http://www.dlib.si/?URN=URN:NBN:SI:DOC-UY4WVSCK

  • Vitas, M., Dobovišek, A.: Evolution, transposition, transformation and flow of information. Anali Pazu 4(2), 66–74 (2014)

    Google Scholar 

  • Wächtershäuser, G.: Origin of life in an iron–sulfur world. In: Brack, A. (ed.) The Molecular Origins of Life, 6th edn, pp. 206–218. Cambridge University Press, Cambridge (1998)

    Chapter  Google Scholar 

  • Wächtershäuser, G.: From volcanic origins of chemoautotrophic life to bacteria, archaea and eukarya. Phil. Trans. R. Soc. B 361, 1787–1808 (2006). doi:10.1098/rstb.2006.1904

    Article  Google Scholar 

  • Walker, S.I., Kim, H., Davies, P.C.W.: The informational architecture of the cell. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. (2015). doi:10.1098/rsta.2015.0057

    Google Scholar 

  • Wang, J., Dasgupta, I., Fox, G.E.: Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters. Archaea 2(4), 241–251 (2009)

    Article  Google Scholar 

  • Wickramashighe, R.H., Villee, C.A.: Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature 256, 509–510 (1975). doi:10.1038/256509a0

    Article  Google Scholar 

  • Woehle, C., Kusdian, G., Radine, C., Graur, D., Landan, G. and Gould, S.B. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genom. 15, 906 (2014) http://www.biomedcentral.com/1471-2164/15/906

  • Woese, C.: A new biology for a new century. Microbiol. Mol. Biol. Rev. 68, 173–186 (2004)

    Article  Google Scholar 

  • Wolf, Y.I., Koonin, E.V.: On the origin of the translation system and the genetic code in the RNA world by means of natural selection, and subfunctionalization. Biol. Dir. 2, 14 (2007)

    Article  Google Scholar 

  • Xiong, Y., Eickbush, T.H.: Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO J. 9(10), 3353–3362 (1990)

    Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank everyone who directly or indirectly contributed to the creation of this work. In particular, we would like to thank Patrick Beckett and Michael J. Russell for critical reading of the manuscript and making useful suggestions. We would also like to thank Günther Witzany for providing us with some clues on reverse transcription. We also appreciate Aljaž Bolta’s help in the form of reading the manuscript and assisting in the figures preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Vitas.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitas, M., Dobovišek, A. On a quest of reverse translation. Found Chem 19, 139–155 (2017). https://doi.org/10.1007/s10698-016-9260-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-016-9260-5

Keywords

Navigation