Skip to main content
Log in

The weak nuclear force, the chirality of atoms, and the origin of optically active molecules

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Although chemical phenomena are primarily associated with electrons in atoms, ions, and molecules, the masses, charges, spins, and other properties of the nuclei in these species contribute significantly as well. Isotopes, for instance, have proven invaluable in chemistry, in particular the elucidation of reaction mechanisms. Elements with unstable nuclei, for example carbon-14 undergoing beta decay, have enriched chemistry and many other scientific disciplines. The nuclei of all elements have a much more subtle and largely unknown effect on chemical phenomena. All nuclei are innately chiral and, because electrons can penetrate nuclei, all atoms and molecules are likewise chiral. This article describes in considerable detail the discovery of chiral nuclei, how this unusual chirality may influence the chemical behavior of atoms and molecules, and how atomic chirality may have been responsible for the synthesis of optically active molecules in the pre-biotic world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arimondo, E., Glorieux, P., Oka, T.: Observation of inverted infrared lamb dips in separated isomers. Opt. Commun. 23, 369–372 (1977). doi:10.1016/0030-4018(77)90384-4

    Article  Google Scholar 

  • Barron, L.D., Buckingham, A.D.: Time reversal and molecular properties. Acc. Chem. Res. 34, 781–789 (2001). doi:10.1021/ar0100576

    Article  Google Scholar 

  • Bonner, W.A., Flores, J.J.: Experiments of the origins of optical activity. Orig. Life 6, 187–194 (1975). doi:10.1007/BF01372404

    Article  Google Scholar 

  • Bonner, W.A., Lemmon, R.M.: Radiolysis, racemization and the origin of molecular asymmetry in the biosphere. J. Mol. Evol. 11, 95–99 (1978). doi:10.1007/BF01733885

    Article  Google Scholar 

  • Bouchiat, M.A., Bouchiat, C.: Parity violation induced by weak neutral currents in atomic physics. J. Phys. (Paris) 35, 899–927 (1974). doi:10.1051/jphys:019740035012089900

    Google Scholar 

  • Bouchiat, M.A., Bouchiat, C.: Parity violation in atoms. Rep. Prog. Phys. 60, 1351–1396 (1997). doi:10.1088/0034-4885/60/11/004

    Article  Google Scholar 

  • Buckingham, J.: Chasing the molecule. Sutton Publishing, Thrupp (2004)

    Google Scholar 

  • Byrne, J., Dawber, P.G., Spain, A., Williams, A., Dewy, M.S., Gilliam, D.M., Greene, G.L., Lamanze, G.P., Scott, R.D., Pauwels, J., Eykens, R., Lamberty, A.: Measurement of the neutron lifetime by counting trapped protons. Phys. Rev. Lett. 65, 289–292 (1990). doi:10.1103/PhysRevLett.65.289

    Article  Google Scholar 

  • Byrne, J., Dawber, P.G., Habeck, C.G., Smidt, S.J., Spain, J.A., Williams, A.P.: A revised value for the neutron lifetime measured using a penning trap. Europhys. Lett. 33, 187–192 (1996). doi:10.1209/epl/i1996-00319-x

    Article  Google Scholar 

  • Cintas, P.: Elementary asymmetry and biochirality: no longer twinned. ChemPhysChem. 2, 409–410 (2001). doi:10.1002/1439-7641(20010716)2:7<409::AID-CPHC409>3.0.CO;2-B

    Article  Google Scholar 

  • Cintas, P.: Sublime arguments rethinking: the generation of homochirality under prebiotic conditions. Angew. Chem. Int. Ed. 47, 2918–2920 (2008). doi:10.1002/anie.200705192

    Article  Google Scholar 

  • Close, F., Marten, M., Sutton, C.: The particle odyssey: a journey to the heart of the matter. Oxford University, Oxford (2002)

    Google Scholar 

  • Compton, R.N., Pagni, R.M.: Chirality of biomolecules. In: Bederson, B., Walther, H. (eds.) Advances in atomic, molecular, and optical physics, vol. 48, pp. 219–261. Academic Press, Amsterdam (2002)

    Google Scholar 

  • Crassous, J., Chardonnet, C., Saue, T., Schwerdtfeger, P.: Recent experimental and theoretical developments towards the observation of parity violation (PV) effects in molecules by spectroscopy. Org. Biomol. Chem. 3, 2218–2224 (2005). doi:10.1039/b504212g

    Article  Google Scholar 

  • Daussy, C., Marrel, T., Amy-Klein, A., Nguyen, C.T., Bordé, P., Chardonnet, C.: Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy. Phys. Rev. Lett. 83, 1554–1557 (1999). doi:10.1103/PhysRevLett.83.1554

    Article  Google Scholar 

  • Dosch, H.G.: Beyond the nanoworld—quarks, leptons, and gauge bosons. A. K. Peters, Wellesley (2008)

    Google Scholar 

  • Frank, F.C.: On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–460 (1953). doi:10.1016/0006-3002(53)90082-1

    Article  Google Scholar 

  • Frauenfelder, H., Bobone, R., von Goeler, E., Levine, N., Lewis, H.R., Peacock, R.N., Rossi, A., De Paquali, G.: Parity and the polarization of electrons. Phys. Rev. 106, 386–387 (1957). doi:10.1103/PhysRev.106.386

    Article  Google Scholar 

  • Fuss, W.: Does life originate from a single molecule? Chirality 21, 299–304 (2009). doi:10.1002/chir.20576

    Article  Google Scholar 

  • Garwin, R.L., Lederman, L.M., Weinrich, M.: Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev. 105, 1415–1417 (1957). doi:10.1103/PhysRev.105.1415

    Article  Google Scholar 

  • Greiner, W., Müller, B.: Gauge theories of weak interactions. Springer, Berlin, Germany (2000)

    Google Scholar 

  • Guth, A.H.: The inflationary universe. Perseus Books, Cambridge (1997)

    Google Scholar 

  • Harris, D.C., Bertolucci, M.D.: Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. Dover, New York (1978)

    Google Scholar 

  • Hedman, M.: The age of everything: how science explores the past. University of Chicago, Chicago (2007)

    Google Scholar 

  • Hegstrom, R.A.: β Decay and the origins of biological chirality: theoretical insights. Nature 297, 643–647 (1982). doi:10.1038/297643a0

    Article  Google Scholar 

  • Hegstrom, R.A.: Weak neutral currents and β radiolysis effects on the origin of biomolecular chirality. Nature 315, 749–750 (1985). doi:10.1038/315749a0

    Article  Google Scholar 

  • Hegstrom, R.A.: Parity violation and chiral symmetry breaking of a racemic mixture. Biosystems 20, 49–57 (1987). doi:10.1016/0303-2647(87)90019-0

    Article  Google Scholar 

  • Hegstrom, R.A., Rein, D.W., Sandars, P.G.H.: Calculation of the parity nonconserving energy difference between mirror-image molecules. J. Chem. Phys. 73, 2329–2341 (1980). doi:10.1063/1.440383

    Article  Google Scholar 

  • Hegstrom, R.A., Rich, A., van House, J.: New estimates of asymmetric decomposition of racemic mixtures by natural β-radiation sources. Nature 313, 391–392 (1985). doi:10.1038/313391a0

    Article  Google Scholar 

  • Horný, L., Mariotti, F., Quack, M.: Ab initio study of some persistent nitroxide radicals. Chimia (Aarau) 62, 256–259 (2008). doi:10.2533/chimia.2008.256

    Article  Google Scholar 

  • Icke, V.: The force of symmetry. Cambridge University, Cambridge (1995)

    Google Scholar 

  • Kaufman, D.S., Miller, G.H.: Overview of amino acid geochronology. Comp. Biochem. Mol. Biol. B 102B, 199–204 (1992). doi:10.1016/0305-0491(92)90110-D

    Article  Google Scholar 

  • Keszthelyi, L.: Possibilities to measure the parity-violating energy differences. J. Biol. Phys. 20, 241–245 (1994). doi:10.1007/BF00700442

    Article  Google Scholar 

  • Koks, F.S.J., van Klinken, J.: Investigation of β-polarization at low velocities with β-particles from the decay of tritium. Nucl. Phys. A 272, 61–81 (1976). doi:10.1016/0375-9474(76)90318-3

    Article  Google Scholar 

  • Kondepudi, D., Nelson, D.K.: Weak neutral currents and the origin of biomolecular chirality. Nature 314, 438–441 (1985). doi:10.1038/314438a0

    Article  Google Scholar 

  • Lahamer, A.S., Mahurin, S.M., Compton, R.N., House, D., Laerdahl, J.K., Lein, M., Schwerdtfeger, P.: Search for parity-violating energy differences between enantiomers of a chiral iron complex. Phys. Rev. Lett. 85, 4470–4473 (2000). doi:10.1103/PhysRevLett.85.4470

    Article  Google Scholar 

  • Lederman, L.M., Hill, C.T.: Symmetry and the beautiful universe. Prometheus, Amherst (2008)

    Google Scholar 

  • Lee, T.D., Yang, C.N.: Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956). doi:10.1103/PhysRev.104.254

    Article  Google Scholar 

  • Lee, T.D., Yang, C.N.: Parity nonconservation and a two-component theory of the neutrino. Phys. Rev. 105, 1671–1674 (1957). doi:10.1103/PhysRev.105.1671

    Article  Google Scholar 

  • Lucas, D.M., Warrington, R.B., Stacey, D.N., Thompson, C.D.: Search for parity nonconserving optical rotation in atomic samarium. Phys. Rev. A 58, 3457–3471 (1998). doi:10.1103/PhysRevA.58.3457

    Article  Google Scholar 

  • Macpherson, M.J.D., Zetie, K.P., Warrington, R.B., Stacey, D.N., Hoare, J.P.: Precise measurement of parity nonconserving optical rotation at 876 nm in atomic bismuth. Phys. Rev. Lett. 67, 2784–2787 (1991). doi:10.1103/PhysRevLett.67.2784

    Article  Google Scholar 

  • Meekhof, D.M., Vetter, P.A., Majumder, P.K., Lamoreaux, S.K., Fortson, E.N.: Optical-rotation technique used for a high-precision measurement of parity nonconservation in atomic lead. Phys. Rev. A 52, 1895–1908 (1995). doi:10.1103/PhysRevA.52.1895

    Article  Google Scholar 

  • Oerter, R.: The theory of almost everything. Pi Press, New York (2006)

    Google Scholar 

  • Pagni, R.M., Bartmess, J.: A photochemical mechanism for homochirogenesis. J. Phys. Chem. A 111, 10604–10608 (2007). doi:10.1021/jp074182w

    Article  Google Scholar 

  • Postma, H., Huiskamp, W.J., Miedema, A.R., Steenland, M.J., Tolhoek, H.A., Gorter, C.J.: Asymmetry of positron emission by polarized 58Co nuclei. Nucl. Phys. 23, 259–260 (1957)

    Google Scholar 

  • Pullman, B.: The atom in the history of human thought. Oxford University, Oxford (2001)

    Google Scholar 

  • Quack, M.: How important is parity violation for molecular and biomolecular chirality. Angew. Chem. Int. Ed. 41, 4618–4630 (2002). doi:10.1002/anie.200290005

    Article  Google Scholar 

  • Quack, M., Stohner, J.: Parity violation in chiral molecules. Chimia (Aarau) 59, 530–538 (2005). doi:10.2533/000942905777676119

    Article  Google Scholar 

  • Quigg, C.: Gauge theories of the strong, weak, and electromagnetic interactions. Benjamine/Cummings, Reading (1983)

    Google Scholar 

  • Quigg, C.: Particles and the standard model. In: Fraser, G. (ed.) The new physics for the twenty-first century, pp. 86–118. Cambridge University, Cambridge (2006)

    Google Scholar 

  • Quinn, H.R., Nir, Y.: The mystery of the missing antimatter. Princeton University, Princeton (2008)

    Google Scholar 

  • Rein, D.W., Hegstrom, R.A., Sandars, P.G.H.: Parity non-conserving energy difference between mirror image molecules. Phys. Lett. 71A, 499–502 (1979)

    Google Scholar 

  • Rigden, J.S.: Hydrogen: the essential element. Harvard University, Cambridge (2003)

    Google Scholar 

  • Rocke, A.: Chemical atomism in the nineteenth century: from Dalton to Cannizzaro. Ohio State University, Columbus (1989)

    Google Scholar 

  • Salam, A.: The role of chirality in the origin of life. J. Mol. Evol. 33, 105–113 (1991). doi:10.1007/BF02193624

    Article  Google Scholar 

  • Sandars, P.: Atoms are chiral too. Sci. Spectr. 70–74 (1998)

  • Scerri, E.: The periodic table: its story and its significance. Oxford University, Oxford (2006)

    Google Scholar 

  • Schumm, B.A.: Deep down things. Johns Hopkins University, Baltimore (2004)

    Google Scholar 

  • Schwerdtfeger, P., Gierlich, J., Bollwein, T.: Large parity-violating effects in heavy-metal-containing chiral compounds. Angew. Chem. Int. Ed. 42, 1293–1295 (2003). doi:10.1002/anie.200390333

    Article  Google Scholar 

  • Sullivan, R., Pyda, M., Pak, J., Wunderlich, B., Thompson, J., Pagni, R., Pan, H., Barnes, C., Schwerdtfeger, P., Compton, R.: Search for electroweak interactions in amino acid crystals. II. The Salam hypothesis. J. Phys. Chem. A 107, 6674–6680 (2003). doi:10.1021/jp0225673

    Article  Google Scholar 

  • Ullman, J.D., Frauenfelder, H., Lipkin, H.J., Rossi, A.: Determination of electron and positron helicity with Møller and Bhabha scattering. Phys. Rev. 122, 536–548 (1961). doi:10.1103/PhysRev.122.536

    Article  Google Scholar 

  • Vester, F., Ulbricht, T.L.V., Krauch, H.: Optische aktivität und die paritätsverletzung im β-zerfall. Naturwissenschaften 46, 68 (1959). doi:10.1007/BF00599091

    Article  Google Scholar 

  • Vetter, P.A., Meekhof, D.M., Majumder, P.K., Lamoreaux, S.K., Forston, E.N.: Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium. Phys. Rev. Lett. 74, 2658–2661 (1995). doi:10.1103/PhysRevLett.74.2658

    Article  Google Scholar 

  • Wagnière, G.H.: On chirality and the universal asymmetry—reflections on image and mirror image. Wiley–VCH, Zürich (2007)

    Book  Google Scholar 

  • Wang, W., Yi, F., Ni, Y., Zhao, Z., Jin, X., Tang, Y.: Parity violation of electroweak force in phase transitions of single crystals of d- and l-alanine and valine. J. Biol. Phys. 26, 51–65 (2000). doi:10.1023/A:1005187416704

    Article  Google Scholar 

  • Wesendrup, R., Laerdahl, J.K., Compton, R.N., Schwerdtfeger, P.: Biomolecular homochirality and electroweak interactions. I. The Yamagata hypothesis. J. Phys. Chem. A 107, 6668–6673 (2003). doi:10.1021/jp022568v

    Article  Google Scholar 

  • Weinberg, S.: The first three minutes. Basic Books, New York (1993)

    Google Scholar 

  • Wood, C.S., Bennett, S.C., Cho, D., Masterson, B.P., Roberts, J.L., Tanner, C.E., Wieman, C.E.: Measurement of parity nonconservation and an anapole moment in cesium. Science 275, 1759–1763 (1997). doi:10.1126/science.275.5307.1759

    Article  Google Scholar 

  • Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957). doi:10.1103/PhysRev.105.1413

    Article  Google Scholar 

  • Yamagata, Y.: A hypothesis for the asymmetric appearance of biomolecules on earth. J. Theor. Biol. 11, 495–498 (1966). doi:10.1016/0022-5193(66)90110-X

    Article  Google Scholar 

  • Zee, A.: Fearful symmetry: the search for beauty in modern physics. Princeton University, Princeton (1999)

    Google Scholar 

  • Zel’Dovich, Y.A.: Electromagnetic interactions in the loss of parity. Sov. Phys. JETP 6, 1184–1186 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Pagni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagni, R.M. The weak nuclear force, the chirality of atoms, and the origin of optically active molecules. Found Chem 11, 105–122 (2009). https://doi.org/10.1007/s10698-009-9070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-009-9070-0

Keywords

Navigation