Skip to main content

Advertisement

Log in

The impact of carbon footprinting aggregation on realizing emission reduction targets

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

A variety of activity-based methods exist for estimating the carbon footprint in transportation. For instance, the greenhouse gas protocol suggests a more aggregate estimation method than the Network for Transport and Environment (NTM) method. In this study, we implement a detailed estimation method based on NTM and different aggregate approaches for transportation carbon emissions in the dynamic lot sizing model. Analytical results show the limitations of aggregate models for both accurate estimation of real emissions and risks of compliance with carbon constraints (e.g., carbon caps). Extensive numerical experimentation shows that the magnitude of errors can be substantial. We provide insights under which limited conditions aggregate estimations can be used safely and when more detailed estimates are appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Absi N, Dauzère-Pérès S, Kedad-Sidhoum S, Penz B, Rapine C (2011) Lot-Sizing with carbon emission constraints. Working paper—EMSE CMP-SFL 2011(5)

  • Benjaafar S, Li Y, Daskin M (2010) Carbon footprint and the management of supply chains: insights from simple models. Working paper

  • Bouchery Y, Ghaffari A, Jemai Z, Dallery Y (2010) How to incorporate sustainability issues into traditional operations management models? The sustainable order quantity example. Laboratoire Génie Industriel, Ecole Centrale Paris. Working paper

  • Brahimi N, Dauzere-Peres S, Najid NM, Nordli A (2006) Single item lot sizing problems. Eur J Operat Res 168:1–16

    Article  MATH  MathSciNet  Google Scholar 

  • CDP (2011a) Carbon disclosure project. Available on www.cdproject.net/. Accessed on 21 March 2011

  • CDP (2011b) Carbon disclosure project. Supply chain report: ATKearney. Available at https://www.cdproject.net/CDPResults/CDP-2011-Supply-Chain-Report.pdf. Accessed on 21 March 2011

  • Chen X, Benjaafar S, Elomri A (2011) The carbon-constrained EOQ. University of Minnesota, USA. Working paper

  • Cholette S, Venkat K (2009) The energy and carbon intensity of wine distribution: a study of logistical options for delivering wine to consumers. J Cleaner Prod 17(16):1401–1413

    Article  Google Scholar 

  • EPA (2011) Environmental protection agency, metrics for expressing GHG emissions. Available at http://www.epa.gov/autoemissions. Accessed on 12 April 2011

  • EU Transport GHG (2007) The contribution of transport to GHG emissions. European Commission. Available at http://www.eutransportghg2050.eu/cms/the-contribution-of-transport-to-ghg-emissions/. Accessed on 2 June 2011

  • European Commission (2011) Roadmap to a Single European transport area—towards a competitive and resource efficient transport system. Available at http://ec.europa.eu/transport/index_en.htm. Accessed on 27 May 2011

  • Florian M, Lenstra J, Rinnooy K (1980) Deterministic production planning algorithms and complexity. Manage Sci 26(7):669–679

    Article  MATH  Google Scholar 

  • GHG Protocol Calculation Tools (2011) GHG emissions from transport or mobile sources. Available at http://www.ghgprotocol.org/calculation-tools/all-tools. Accessed on 11 March 2011

  • GHG Protocol Core Module Guidance (2008) Climate leaders, greenhouse gas inventory protocol core module guidance. Available at http://www.epa.gov/climateleaders/documents/resources/mobilesource_guidance.pdf. Accessed on 12 April 2011

  • GHG Protocol Standard (2011) The greenhouse gas protocol. Available at http://www.ghgprotocol.org/standards. Accessed on 11 March 2011

  • Hoffman AJ, Woody JG (2008) Climate change: what’s your business strategy? Harvard Business Press, USA

    Google Scholar 

  • IPCC (2007) Climate change 2007: an assessment of the intergovernmental panel on climate change. Available at http://www.ipcc.ch/. Accessed on 27 May 2011

  • Jalil M, Zuidwijk R, Fleischmann M, van Nunen J (2011) Spare parts logistics and installed base information. J Oper Res Soc 62(3):442–457

    Article  Google Scholar 

  • Lee C-Y, Cetinkaya S, Wagelmans A (2001) A dynamic lot-sizing model with demand time windows. Manage Sci 47(10):1384 (ABI/INFORM Global)

    Google Scholar 

  • Mooij B, Wagelmans APM, Helmrich MJR (2011) Finding a lagrangean lower bound on the emission lot-sizing problem. PhD thesis. Erasmus University, The Netherlands

  • NTM Road (2008) Environmental data for international cargo transport-road transport. http://www.ntmcalc.se/index.html. Accessed on 13 Feb 2011

  • EPA Road (2011) Climate change—greenhouse gas emissions, on the Road. US Environmental protection agency. Available at http://www.epa.gov/climatechange/emissions/ind_road.html. Accessed on 2 June 2011

  • TRL (2010) Information retrieved from ARTEMIS project web site. http://www.trl.co.uk/artemis/

  • Wagelmans A (1990) Sensitivity analysis in combinatorial optimization. PhD thesis, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands

  • Wagner H, Whitin T (1958) Dynamic version of the economic lot size model. Manage Sci 5:89–96

    Article  MATH  MathSciNet  Google Scholar 

  • Xie J, Dong J (2002) Heuristic genetic algorithms for general capacitated lot-sizing problems. Comput Math Appl 44:263–276

    Article  MATH  MathSciNet  Google Scholar 

  • Zangwill W (1969) A backlogging model and multi-echelon model of a dynamic economic lot size production system—a network approach. Manage Sci 18(9):506–527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar E. Blanco.

Appendix

Appendix

Property 1

Let \( Y^{c*} = \left[ {y_{1}^{c*} y_{1}^{c*} \cdots y_{T}^{c*} } \right] \) and \( Q^{c*} = \left[ {q_{1}^{c*} q_{1}^{c*} \cdots q_{T}^{c*} } \right] \) be the optimal inventory policy obtained by model C. Suppose \( q_{{1,T^{\prime } }} > q_{{T^{\prime } ,T}} \) and \( W_{k} < W_{l} \) such that \( W_{k} = W_{1} = \cdots = W_{{T^{'} }} \) and \( W_{l} = W_{{T^{\prime } + 1}} = \cdots = W_{T} \) , if \( \sum\nolimits_{t = 1}^{T} {y_{t}^{c*} } = T \) and \( T^{\prime } \le \frac{T}{2} \) , then \( Y^{c*} \) exceeds the carbon cap.

Proof

Since \( C\left( {Y^{c*} } \right) \le C \), \( C\left( {Y^{c*} } \right) + \gamma = C \) for some γ ≥ 0. If we assume that \( Y^{c*} \) is not exceeding the carbon cap, the following relation should always hold: \( CFP\left( {Y^{c*} ,Q^{c*} } \right) \le C \to CFP\left( {Y^{c*} ,Q^{c*} } \right) \le C\left( {Y^{c*} } \right) + \gamma \), which implies \( \gamma \ge \sum\nolimits_{t = 1}^{T} {\widehat{g}_{t} }q_{t}^{c*} - \overline{D} \sum\nolimits_{t = 1}^{T}{\widehat{g}_{t} } y_{t}^{c*} \) such that \( \overline{D} = \frac{{\mathop \sum \nolimits_{j = 1}^{T} d_{j} }}{T} \). Thus, \( \sum\nolimits_{t = 1}^{T} {\widehat{g}_{t} } q_{t}^{c*} \ge\overline{D} \sum\nolimits_{t = 1}^{T} {\widehat{g}_{t} }y_{t}^{c*} \). Using the nomenclature q i,j the condition is reduced to \( \widehat{g}_{i} \left( {\frac{{q_{{1,T^{\prime } }} }}{{\overline{D} }} - \sum\nolimits_{t = 1}^{{T^{\prime } }} {y_{t}^{c*} } } \right) + \widehat{g}_{j} \left( {\frac{{q_{{T^{\prime } + 1,T}} }}{{\overline{D} }} - \sum\nolimits_{{t = T^{\prime } + 1}}^{T} {y_{t}^{c*} } } \right) \ge 0 \) such that \( \widehat{g}_{i} \) and \( \widehat{g}_{j} \) are the emission factors related to \( W_{{1,T^{\prime } }} \) and \( W_{{T^{\prime } + 1,T}} \) respectively. Clearly \( q_{{1,T^{\prime } }} + q_{{T^{\prime } + 1,T}} = \sum\nolimits_{t = 1}^{T} {d_{t} } \), and therefore it is possible to define a factor m such that \( q_{{1,T^{\prime } }} = m\sum\nolimits_{t = 1}^{T} {d_{t} } \) and \( q_{{T^{'} + 1,T}} = \left( {1 - m} \right)\mathop \sum \limits_{t = 1}^{T} d_{t} \). Therefore, \( \widehat{g}_{i} \left( {mT - T^{\prime } } \right) + \widehat{g}_{j} \left( {T^{\prime } - mT} \right) \ge 0 \). Since condition \( q_{{1,T^{'} }} > q_{{T^{'} + 1,T}} \) implies that \( m > \frac{1}{2} \), thus \( \widehat{g}_{i} \ge \widehat{g}_{j} \). □

Property 2

Let \( Y^{d*} = \left[ {y_{1}^{d*} y_{2}^{d*} \cdots y_{T}^{d*} } \right] \) and \( Q^{d*} = \left[ {q_{1}^{d*} q_{2}^{d*} \cdots q_{T}^{d*} } \right] \) be the optimal inventory policy obtained by model D. Suppose \( W_{1} = \cdots = W_{T} \) , if \( C - D\left( {Y^{d*} } \right) < i\frac{{\widehat{g}}}{T}\mathop {\sum\nolimits_{t} {d_{t} } }\limits_{t} \) such that i is the number of \( y_{j}^{d*} = 0 \) for any \( 1 \le j \le T \) , then \( Y^{d*} \) exceeds the carbon cap.

Proof

Since \( D\left( {Y^{d*} } \right) \le C \), and we can define \( D\left( {Y^{d*} } \right) + \delta = C \) for some \( \delta \ge 0 \). If we assume that \( Y^{d*} \) is not exceeding the carbon cap, the following relation should always hold: \( CFP\left( {Y^{d*} ,Q^{d*} } \right) \le C \to CFP\left( {Y^{d*} ,Q^{d*} } \right) \le D\left( {Y^{d*} } \right) + \delta \), which implies the following condition \( \widehat{g}\sum\nolimits_{j = 1}^{T} {d_{j} } \le \widehat{g}\sum\nolimits_{t} {y_{t}^{d*} } \left( {\frac{{\mathop \sum \nolimits_{j = 1}^{T} d_{j} }}{T}} \right) + \delta \). Thus, \( \delta \ge \left( {T - \sum\nolimits_{t = 1}^{T} {y_{t}^{d*} } } \right)\widehat{g}\frac{{\mathop \sum \nolimits_{j = 1}^{T} d_{j} }}{T} \). □

Corollary 2.1

Let \( Y^{d*} = \left[ {y_{1}^{d*} y_{2}^{d*} \cdots y_{T}^{d*} } \right] \) and \( Q^{d*} = \left[ {q_{1}^{d*} q_{2}^{d*} \cdots q_{T}^{d*} } \right] \) be the optimal inventory policy obtained by model D. Suppose \( W_{1} = \cdots = W_{T} \) , if \( \sum\nolimits_{t = 1}^{T} {y_{t}^{d*} < T} \) and \( C = D\left( {Y^{d*} } \right) \) , then \( Y^{d*} \) exceeds the carbon cap.

Proof

If \( \delta = 0 \) thus \( \widehat{g}\sum\nolimits_{j = 1}^{T} {d_{j} \le \widehat{g}} \sum\nolimits_{t} {y_{t}^{d*} \frac{{\mathop \sum \nolimits_{j = 1}^{T} d_{j} }}{T}} \). However, since \( \sum\nolimits_{t} {y_{t}^{d*} \le T} \) it is clear that the previous condition is just valid for \( \sum\nolimits_{t} {y_{t}^{d*} = T} \), but we know that \( \sum\nolimits_{t} {y_{t}^{d*} < T} \). □

Property 3

Let \( Y^{f*} = \left[ {y_{1}^{f*} y_{2}^{f*} \cdots y_{T}^{f*} } \right] \) \( Q^{f*} = \left[ {q_{1}^{f*} q_{1}^{f*} \cdots q_{T}^{f*} } \right] \) be the optimal inventory policy obtained by model F. Suppose \( W_{1} = \cdots = W_{T} \) , if \( WT - \sum\nolimits_{j = 1}^{T} {d_{j} \in [0,iW)} \) such that i is the number of \( y_{j}^{*} = 0 \) for any \( 1 \le j \le T \) , then \( Y^{f*} Q^{f*} \) is not the true optimal.

Proof

Since \( CFP\left( {Y^{*} ,Q^{*} } \right) \le C \), we can define \( CFP\left( {Y^{*} ,Q^{*} } \right) + \beta = C \) for some \( \beta \ge 0 \). Besides, we notice that \( WT \ge \sum\nolimits_{j = 1}^{T} {d_{j} } \) and therefore we define \( WT = \varepsilon + \sum\nolimits_{j = 1}^{T} {d_{j} } \)for some \( \varepsilon \ge 0 \).If we assume that the optimal solution of model F is indeed the true optimal solution, the following relation should always hold: \( Y^{*} = Y^{f*} \), thus \( F\left( {Y^{*} } \right) \le C \to \beta \ge F\left( {Y^{*} } \right) - CFP\left( {Y^{*} ,Q^{*} } \right) \), which implies \( \beta \ge \widehat{g}\left( {W\sum\nolimits_{t} {y_{t}^{*} } - \sum\nolimits_{j = 1}^{T} {d_{j} } } \right) \). Thus \( W\sum\nolimits_{t} {y_{t}^{*} } - \sum\nolimits_{j = 1}^{T} {d_{j} \ge 0} \to W\sum\nolimits_{t} {y_{t}^{*} } - WT + \varepsilon \ge 0 \) and therefore the following condition should hold \( \varepsilon \ge W\left( {T - \sum\nolimits_{t} {y_{t}^{*} } } \right) \). □

Corollary 3.1

Let \( Y^{f*} = \left[ {y_{1}^{f*} y_{2}^{f*} \cdots y_{T}^{f*} } \right] \) \( Q^{f*} = \left[ {q_{1}^{f*} q_{2}^{f*} \cdots q_{T}^{f*} } \right] \) be the optimal inventory policy obtained by model F. Suppose \( W_{1} = \cdots = W_{T} \) , if \( \sum\nolimits_{t = 1}^{T} {y_{t}^{*} < T} \) and \( WT - \sum\nolimits_{j = 1}^{T} {d_{j} = 0} \) then the optimal solution of model F is not the true optimal solution.

Proof

If \( \varepsilon = 0 \) thus \( \sum\nolimits_{t} {y_{t}^{*} - T \ge 0} \). However, since \( \sum\nolimits_{t} {y_{t}^{*} \le T} \) it is clear that the previous condition is just valid for \( \sum\nolimits_{t} {y_{t}^{*} = T} \), but we know that \( \sum\nolimits_{t} {y_{t}^{*} < T} \). □

Property 4

Let \( Y^{e*} = \left[ {y_{1}^{e*} y_{2}^{e*} \cdots y_{T}^{e*} } \right] \) and \( Q^{e*} = \left[ {q_{1}^{e*} q_{2}^{e*} \cdots q_{T}^{e*} } \right] \) be the optimal inventory policy obtained by model E. If \( C - CFP\left( {Y^{*} ,Q^{*} } \right) < \sum\nolimits_{t = 1}^{T} {} \widehat{g}_{t} \left( {W_{t} y_{t}^{*} - q_{t}^{*} } \right) \) then \( Y^{e*} \) \( Q^{e*} \) is not the true optimal.

Proof

Since \( CFP\left( {Y^{*} ,Q^{*} } \right) \le C \) we define \( CFP\left( {Y^{*} ,Q^{*} } \right) + \beta = C \) for some \( \beta \ge 0 \). Furthermore, we notice that \( min\left\{ {W_{t} } \right\} \ge \sum\nolimits_{j = 1}^{T} {d_{j} } \). If we assume that model E is a true optimal solution the following relation should always hold: \( Y^{*} = Y^{e*} \), thus \( E\left( {Y^{*} } \right) \le C \to \beta \ge E\left( {Y^{*} } \right) - CFP\left( {Y^{*} ,Q^{*} } \right) \), which implies \( \beta \ge \widehat{g}_{1} \left( {W_{1} y_{1}^{*} - q_{1}^{*} } \right) + \cdots + \widehat{g}_{T} \left( {W_{T} y_{T}^{*} - q_{T}^{*} } \right) \). □

Corollary 4.1

Let \( Y^{f*} = \left[ {y_{1}^{f*} y_{2}^{f*} \cdots y_{T}^{f*} } \right] \) and \( Q^{f*} = \left[ {q_{1}^{f*} q_{2}^{f*} \cdots q_{T}^{f*} } \right] \) be the optimal inventory policy obtained by model F. If \( C - CFP\left( {Y^{*} ,Q^{*} } \right) < \widehat{g}\left( {W\sum\nolimits_{t} {y_{t}^{*} } - \sum\nolimits_{j = 1}^{T} {d_{j} } } \right) \) then \( Y^{f*} \) \( Q^{f*} \) is not the true optimal.

Proof

Since \( W = W_{1} = W_{2} = \cdots = W_{T} \), property 2 is reduced to \( \beta < \widehat{g}\left( {W\sum\nolimits_{t} {y_{t}^{*} } - \sum\nolimits_{j = 1}^{T} {d_{j} } } \right) \). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Martínez, J.C., Fransoo, J.C., Blanco, E.E. et al. The impact of carbon footprinting aggregation on realizing emission reduction targets. Flex Serv Manuf J 26, 196–220 (2014). https://doi.org/10.1007/s10696-012-9170-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-012-9170-3

Keywords

Navigation