Skip to main content

Advertisement

Log in

DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study is aimed to evaluate the toxic effects of triclosan (TCS) in an Indian major carp Labeo rohita. The 96-h LC50 value of triclosan to L. rohita was found to be 0.39 mg L−1. Fish were exposed to two sublethal concentrations (0.039 mg L−1, treatment I and 0.078 mg L−1, treatment II) of TCS for 35 days, and certain hematobiochemical, antioxidant, histopathological responses were measured. Compared to the control group, there was a significant (p < 0.05) decrease in the values and genotoxicity of hematological parameters such as hemoglobin (Hb), hematocrit (Hct), and erythrocyte (RBC) in TCS-exposed fish, but the values of leucocyte count (WBC), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were found to be increased. A biphasic response in mean corpuscular hemoglobin concentration (MCHC) value was observed during the study period (35 days). Significant (p < 0.05) alterations in plasma biochemical parameters (glucose and protein), electrolytes (Na+, K+, and Cl), and transaminases (GOT and GPT) were observed in fish treated with TCS in both treatments. Gill Na+/K+-ATPase activity was found to be decreased in fish treated with TCS in both treatments. Enzymatic and nonenzymatic antioxidant index levels have also fluctuated in all the tissues (gill, liver, and kidney). The histological lesions were comparatively more severe in the gill than the liver and kidney. Comet assay showed DNA damage on exposure at two sublethal concentrations. The present results suggest that TCS is highly toxic to fish even at sublethal concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MAS (2015) Comparative toxicity of copper oxide bulk and nano particles in Nile tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57

    Article  CAS  Google Scholar 

  • Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46(9–10):1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1974) Catalase. In: Bergmeyer HV (ed) Methods in enzymatic analysis. Academic, New York, pp 674–684

    Google Scholar 

  • Agrahari S, Kashev C, Pandey KC, Krishna Gopal K (2007) Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pestic Biochem Physiol 88:268–272

    Article  CAS  Google Scholar 

  • Ahmad I, Pacheco M, Santos MA (2003) Naphthalene-induced differential tissue damage association with circulating fish phagocyte induction. Ecotoxicol Environ Saf 54(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Pacheco M, Santos MA (2006) Anguilla anguilla L. oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere 65(6):952–962

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MK, Habibullah-Al-Mamuna M, Parvina E, Akter MS (2013) Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Exp Toxicol Pathol 65(6):903–909

    Article  CAS  PubMed  Google Scholar 

  • Ahn KC, Zhao F, Chen J, Cherednichenko G, Sanmarti E, Denison MS, Lasley B, Pessah IN, Kultz D, Chang DPY, Gee S, Hammock BD (2008) In vitro biologic activities of the antimicrobials triclocarban, it analogs, and triclosan in bioassay screen: receptor-based bioassay screens. Environ Health Perspect 116(9):1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • APHA (1998) American Public Health Association: Standard Method for examination of water and waste 20th ed., Washington DC: America Public Health Association.

  • Ballesteros ML, Wunderlin DA, Bistoni MA (2009) Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicol Environ Saf 72:199–205

    Article  CAS  PubMed  Google Scholar 

  • Barišić J, Dragun Z, Ramani S, Filipović Marijić V, Krasnići N, Čož-Rakovac R, Kostov V, Rebok K, Jordanova M (2015) Evaluation of histopathological alterations in the gills of Vardar chub (Squalius vardarensis Karaman) as an indicator of river pollution. Ecotoxicol Environ Saf 118:158–166

    Article  CAS  Google Scholar 

  • Barja-Fernández S, Míguez JM, Alvarez-Otero R (2013) Histopathological effects of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in the gills, intestine and liver of turbot (Psetta maxima). Ecotoxicol Environ Saf 95:60–68

    Article  CAS  PubMed  Google Scholar 

  • Basha PS, Rani AU (2003) Cadmium induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (tilapia). Ecotoxicol Environ Saf 56:218–221

    Article  CAS  PubMed  Google Scholar 

  • Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 19:1044–1065

    Article  CAS  Google Scholar 

  • Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol 49:9–17

    Article  CAS  PubMed  Google Scholar 

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009a) Cytotoxic and genotoxic effects of in vitro exposure to triclosan and trimethoprim on zebra mussel (Dreissena polymorpha) hemocytes. Comp Biochem Physiol C Toxicol Pharmacol 150:50–56

    Article  CAS  PubMed  Google Scholar 

  • Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009b) In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in zebra mussel hemocytes. Aquat Toxicol 91:238–244

    Article  CAS  PubMed  Google Scholar 

  • Binelli A, Parolini M, Pedriali A, Provini A (2011) Antioxidant activity in the zebra mussel (Dreissena polymorpha) in response to triclosan exposure. Water Air Soil Pollut 217:421–430

    Article  CAS  Google Scholar 

  • Bogiswariy S, Jegathambigai R, Marimuthu K (2008) Effect of acute exposure of cadmium chloride in the morphology of the liver and kidney of mice. In: Proceedings of the international conference on environmental research and technology (ICERT), May 28–30. Parkroyal, Penang, Malaysia, pp 1036–1042

    Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucher F, Hofer R (1993) The effects of treated domestic sewage on three organs (gills, kidney, liver) of brown trout (Salmo trutta). Water Res 27:255–261

    Article  CAS  Google Scholar 

  • Buchner F, Hofer R, Krumschnabel G, Doblander C (1993) Disturbances in the pro-oxidant-antioxidant balance in the liver of bullhead (Cottus gobio L.) exposed to treated paper mill effluents. Chemosphere 27:1329–1338

    Article  Google Scholar 

  • Canesi L, Ciacci C, Lorusso LC, Betti M, Gallo G, Pojana G, Marcomini A (2007) Effects of triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: possible modes of action on non target organisms. Comp Biochem Physiol C 145:464–472

    Google Scholar 

  • Capkin E, Ozcelep T, Kayis S, Altinok I (2017) Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout. Chemosphere 182:720–729

    Article  CAS  PubMed  Google Scholar 

  • Chalew TEA, Halden RU (2009) Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Resour Assoc 45:4–13

    Article  CAS  Google Scholar 

  • Chen C, Wooster GA, Bowser PR (2004) Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin or copper sulfate. Aquaculture 239:421–443

    Article  CAS  Google Scholar 

  • Cooper GR, Mc Daniel V (1970) The determination of glucose by the O-toluidine method. Stand Methods Clin Chem 6:159–170

    Article  CAS  Google Scholar 

  • Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311

    Article  CAS  PubMed  Google Scholar 

  • Devasagayam TPA, Tarachand U (1987) Decreased lipid peroxidation in the rat kidney during gestation. Biochem Biophys Res Commun 145:134–138

    Article  CAS  PubMed  Google Scholar 

  • Drabkin DL (1946) Spectrometric studies, XIV—the crystallographic and optimal properties of the hemoglobin of man in comparison with those of other species. J Biol Chem 164:703–723

    CAS  PubMed  Google Scholar 

  • Eaton DL, Gilbert SG (2008) Principles of toxicology. In: Klaassen CD (ed) Casarett and Doull’s toxicology. The basic science of poisons, 7th edn. McGraw-Hill, New York, pp 11–44

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydril groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • El-Sayed YS, Saad TT, El-Bahr SM (2007) Acute intoxification of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Pharmacol 24:212–217

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed YS, Samak DH, Abou-Ghanema IY, Soliman MK (2015) Physiological and oxidative stress biomarkers in the freshwater monosex Nile tilapia, Oreochromis niloticus L., exposed to pendimethalin-based herbicide. Environ Toxicol 30:430–438

    Article  CAS  PubMed  Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC, Boca Raton, FL, pp 315–341

    Google Scholar 

  • Falisse E, Voisin AS, Silvestre F (2017) Impacts of triclosan exposure on zebrafish early-life stage: toxicity and acclimation mechanisms. Aquat Toxicol 189:97–107

    Article  CAS  PubMed  Google Scholar 

  • Ferguson HW (1989) Systemic pathology of fish. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos P, Fontaínhas-Fernandes A (2007) Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesqui Vet Bras 27(3):103–109

    Article  Google Scholar 

  • Fontana L, Moreira E, Torres M, Fernandez I, Rios A, Sanchezde Medina F, Gi A (1998) Dietary nucleotides correct plasma and liver microsomal fatty acids alterations in rats with liver cirrhosis induced by oral intake of thioacetamide. J Hepatol 28:662–669

    Article  CAS  PubMed  Google Scholar 

  • Foran CM, Bennett ER, Benson WH (2000) Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar Environ Res 50(1–5):153–156

    Article  CAS  PubMed  Google Scholar 

  • Fritsch EB, Connon RE, Werner I, Davies RE, Beggel S, Feng W, Pessah IN (2013) Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promelas). Environ Sci Technol 47:2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Yuan T, Cheng P, Bai Q, Zhou C, Ao J, Wang W, Zhang H (2015) Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila. Chemosphere 139:434–440

    Article  CAS  PubMed  Google Scholar 

  • Ge W, Yan S, Wang J, Zhu L, Chen A, Wang J (2015) Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J Agric Food Chem 63:1856–1862

    Article  CAS  PubMed  Google Scholar 

  • Geiger E, Hornek-Gausterer R, Saçan MT (2016) Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicol Environ Saf 129:189–198

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2006) Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol Environ Saf 54:420–426

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7713

    CAS  Google Scholar 

  • Han J, Won EJ, Hwang UK, Kim LC, Yim JH, Lee JS (2016) Triclosan (TCS) and triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus). Comp Biochem Physiol C Toxicol Pharmacol 185-186:131–137

    Article  CAS  PubMed  Google Scholar 

  • Hasspielar BM, Behar JV, Di Giulio RT (1994) Glutathione-dependent defense in channel catfish (Ictalurus punctatus) and brown bullhead (Ameriurus nebulosus). Ecotoxicol Environ Saf 28:82–90

    Article  Google Scholar 

  • Hemalatha D, Amala A, Rangasamy B, Nataraj B, Ramesh M (2016) Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. Environ Toxicol 31:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Ho JC, Hsiao CD, Kawakami K, Tse WK (2016) Triclosan (TCS) exposure impairs lipid metabolism in zebrafish embryos. Aquat Toxicol 173:29–35

    Article  CAS  PubMed  Google Scholar 

  • Hopkins ZR, Blaney L (2016) An aggregate analysis of personal care products in the environment: identifying the distribution of environmentally-relevant concentrations. Environ Int 92-93:301–316

    Article  CAS  PubMed  Google Scholar 

  • Houtman CJ, Van Oostveen AM, Brouwer A, Lamoree MH, Legler J (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38:6415–6423

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Ren G, Deng L, Zhang J, Liu H, Mu SW, Wu T (2016) Degradable UV-cross linked hydrogel for the controlled release of triclosan with reduced cytotoxicity. Mater Sci Eng C Mater Biol Appl 67:151–158

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Chang RJ, Huang SL, Chen W (2003) Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia, Oreochromis niloticus x O. aureus. Comp Biochem Physiol B Biochem Mol Biol 134:265–270

    Article  PubMed  Google Scholar 

  • Hussain B, Sultana T, Sultana S, Masoud MS, Ahmed Z, Mahboobb S (2018) Fish eco-genotoxicology: comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution. Saudi J Biol Sci 25(2):393–398

    Article  CAS  PubMed  Google Scholar 

  • Imanikia S, Galea F, Nagy E, Phillips DH, Stürzenbaum SR, Arlt VM (2016) The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 45:356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67:167–179

    Article  CAS  PubMed  Google Scholar 

  • Isik I, Celik I (2008) Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 92:38–42

    Article  CAS  Google Scholar 

  • Kappus H (1985) Lipid peroxidation; mechanisms, analysis, enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic, London, pp 273–310

    Chapter  Google Scholar 

  • Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, Lushchak VI (2010) Chromium effects on free radical processes in goldfish tissues: comparison of Cr (III) and Cr (VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol C Toxicol Pharmacol 152:360–370

    Article  CAS  PubMed  Google Scholar 

  • Latch DE, Packer JL, Stender BL, Van Overbek J, Arnold WA, McNeill K (2005) Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ Toxicol Chem 24:517–525

    Article  CAS  PubMed  Google Scholar 

  • Li ZH, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, Randak T (2010) Hepatic antioxidant status and hematological parameters in rainbow trout, Oncorhynchus mykiss, after chronic exposure to carbamazepine. Chem Biol Interact 183:98–104

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Nie X, Ying G, An T, Li K (2013) Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere 90:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Lin DS, Zhou QX, Xie XJ, Liu Y (2010) Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere 81:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR (2002) Occurrence and environmental behaviour of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhou QX, Xie XJ, Lin DS, Dong LX (2010) Oxidative stress and DNA damage in the earthworm Eisenia fetida induced by toluene, ethylbenzene and xylene. Ecotoxicology 19:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Ve 154:427–430

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall L (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Biol Chem 26:736837

    Google Scholar 

  • Luzano N, Rice CP, Ramirez M, Torrents A (2012) Fate of triclosan and methyltriclosan in soil from biosolids application. Environ Pollut 160:103–108

    Article  CAS  Google Scholar 

  • Magare SR, Patil HT (2000) Effect of pesticides on oxygen consumption, red blood cell count and metabolites of a fish, Puntius ticto. Environ Ecol 18:891–894

    CAS  Google Scholar 

  • Maharajana K, Muthulakshmia S, Nataraj B, Ramesh M, Kadirvelu K (2018) Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study. Aquat Toxicol 196:132–145

    Article  CAS  Google Scholar 

  • Maksymiv IV, Husak VV, Mosiichuk NM, Matviishyn TM, Sluchyk IY, Storey JM, Storey KB, Lushchak VI (2015) Hepatotoxicity of herbicide Sencor in goldfish may result from induction of mild oxidative stress. Pestic Biochem Physiol 122:67–75

    Article  CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  • Martinez CBR, Colus IMS (2002) Biomarcadores em peixes neotropicais para o monitoramento da poluicao aquatic na bacia do rio Tibagi. In: Medri ME, Bianchini E, Shibatta AO, Pimenta JA (eds) A bacia do rio Tibagi. Parana, Londrina, pp 551–577

    Google Scholar 

  • Martínez-Paz P, Morales M, Martínez-Guitarte JL, Morcillo G (2013) Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay. Mutat Res 758:41–47

    Article  CAS  PubMed  Google Scholar 

  • Maruna RFL (1958) Quantitative estimation of sodium (Na+) and potassium (K+) in human serum by colorimetric method. Clin Chim Acta 2:581–585

    Article  Google Scholar 

  • Matozzo V, Formenti A, Donadello G, Marin MG (2012a) A multi-biomarker approach to assess effects of triclosan in the clam Ruditapes philippinarum. Mar Environ Res 74:40–46

    Article  CAS  PubMed  Google Scholar 

  • Matozzo V, Rova S, Marin MG (2012b) The nonsteroidal anti-inflammatory drug, ibuprofen, affects the immune parameters in the clam Ruditaps philippinarum. Mar Environ Res 79:116–121

    Article  CAS  PubMed  Google Scholar 

  • Mayer FL, Versteeg DJ, McKee MJ, Folmar LC, Graney RL, McCume DC, Rattner BA (1992) Physiological and non-specific biomarkers. In: Hugget RJ, Kimerle RA Jr, Mehrle PM, Bergman HL (eds) Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Lewis, Chelsea, pp 5–85

    Google Scholar 

  • McKnight IMA (1966) Hematological study on the mountain white fish, Popium willasemi. J Fish Res Board Can 23:45–64

    Article  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Mela M, Randi MAF, Ventura DF, Carvalho CEV, Pelletier E, Oliveira Ribeiro CA (2007) Effects of dietary methyl mercury on liver and kidney histology in the neotrophical fish Hoplias malabaricus. Ecotoxicol Environ Saf 68:426–435

    Article  CAS  PubMed  Google Scholar 

  • Miller TR, Heidler J, Chillrud SN, Delaquil A, Ritchie JC, Mihalic JN, Bopp R, Halden RU (2008) Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ Sci Technol 42:4570–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min EY, Kang JC (2008) Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pestic Biochem Physiol 92:138–143

    Article  CAS  Google Scholar 

  • Modesto KA, Martinez CBR (2010) Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78:294–299

    Article  CAS  PubMed  Google Scholar 

  • Mohamed FA (2001) Impacts of environmental pollution in the southern region of Lake Manzalah, Egypt, on the histological structures of the liver and intestine of Oreochromis niloticus and Tilapia zilli. J Egypt Acad Soc Environ Dev 2:25–42

    Google Scholar 

  • Myers MS, Rhodes LD, McCain BB (1987) Pathologic anatomy and patterns of occurrence of hepatic neoplasms, putative preneoplastic lesions and other idiopathic hepatic conditions in English sole (Parophrys vetulus) from Puget Sound, Washington, USA. J Natl Cancer Inst 78:333–363

    CAS  PubMed  Google Scholar 

  • Nelson DA, Morris MW (1989) Basic methodology. Hematology and coagulation, part IV. In: Nelson DA, Henry JB (eds) Clinical diagnosis and management by laboratory methods, 17th edn. Saunders Company, Philadelphia, pp 578–625 (Chapter 27)

    Google Scholar 

  • Oliveira R, Domingues I, Koppe Grisolia C, Soares AM (2009) Effects of triclosan on zebrafish early-life stages and adult. Environ Sci Pollut Res 16:679–688

    Article  CAS  Google Scholar 

  • Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rodethenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349

    Article  CAS  PubMed  Google Scholar 

  • Pan CG, Peng FJ, Shi WJ, Hu LX, Wei XD, Ying GG (2018) Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 148:393–401

    Article  CAS  PubMed  Google Scholar 

  • Pelgrom SMGJ, Lock RAC, Balm PHM, Wendelaar Bonga SE (1995) Integrated physiological response of tilapia, Oreochromis mossambicus, to sublethal copper exposure. Aquat Toxicol 32:303–320

    Article  CAS  Google Scholar 

  • Poopal RK, Ramesh M, Maruthappan V, Babu Rajendran R (2017) Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol Res 6:505–520

    Article  CAS  Google Scholar 

  • Qiu T, Xie P, Guo L, Zhang D (2009) Plasma biochemical responses of the planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) to prolonged toxic cyanobacterial blooms in natural waters. Environ Toxicol Pharmacol 27:350–356

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DG (2011) GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Ramesh M, Thilagavathi T, Rathika R, Poopal RK (2018) Antioxidant status, biochemical, and hematological responses in a cultivable fish Cirrhinus mrigala exposed to an aquaculture antibiotic sulfamethazine. Aquaculture 491:10–19

    Article  CAS  Google Scholar 

  • Reitman S, Franckel S (1957) A colorimetric method for the determination of serum glutamic oxalo acetic and glutamic pyruvic transaminase. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Rendon-von Osten J, Ortız-Arana A, Guilhermino L, Soares AMVM (2005) In vivo evaluation of three biomarkers in the mosquito fish (Gambusia yucatana) exposed to pesticides. Chemosphere 58:627–636

    Article  CAS  PubMed  Google Scholar 

  • Riva C, Cristoni S, Binelli A (2012) Effects of triclosan in the freshwater mussel Dreissena polymorpha: a proteomic investigation. Aquat Toxicol 118–119:62–71

    Article  CAS  PubMed  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Rusia V, Sood Routine SK (1992) Haematological tests. In: Kanai L, Mukerjee I (eds) Medical laboratory technology. McGraw Hill, New Delhi Tata, pp 252–258

    Google Scholar 

  • Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res 37:3145–3154

    Article  CAS  PubMed  Google Scholar 

  • Salin ML (1987) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  Google Scholar 

  • Samanta P, Bandyopadhyay N, Pal S, Mukherjee AK, Ghosh AR (2015) Histopathological and ultramicroscopical changes in gill, liver and kidney of Anabas testudineus (Bloch) after chronic intoxication of almix (metsulfuron methyl 10.1% + chlorimuron ethyl 10.1%) herbicide. Ecotoxicol Environ Saf 122:360–367

    Article  CAS  PubMed  Google Scholar 

  • Sanchez D, Houde M, Douville M, De Silva AO, Spence C, Verreault J (2015) Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids. Aquat Toxicol 160:31–38

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Karthika S, Malarvizhi A, Ramesh M (2011) Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: hematological, biochemical, ionoregulatory and enzymological responses. J Hazard Mater 195:188–194

    Article  CAS  Google Scholar 

  • Scalon MCS, Rechenmacher C, Siebel AM, Kayser ML, Rodrigues MTAS, Maluf SW, Silva LB (2010) Evaluation of Sinos river water genotoxicity using the comet assay in fish. Braz J Biol 70:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Schlenk D, Celander M, Gallagher EP, George S, James M, Kullman SW, van der Hurk P, Willett K (2008) Biotransformation in fishes. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. Taylor and Francis Group, Boca Raton, pp 153–234

    Chapter  Google Scholar 

  • Schnitzler JG, Frédérich B, Dussenne M, Klaren PH, Silvestre F, Das K (2016) Triclosan-induced alterations in thyroid hormone status result in retarded early development and metamorphosis in Cyprinodon variegatus. Aquat Toxicol 181:1–10

    Article  CAS  PubMed  Google Scholar 

  • Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I. Histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150

    Article  CAS  PubMed  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392

    Article  CAS  PubMed  Google Scholar 

  • Serra-Roig MP, Jurado A, Díaz-Cruz MS, Vázquez-Suñé E, Pujades E, Barceló D (2016) Occurrence, fate and risk assessment of personal care products in river–groundwater interface. Sci Total Environ 568:829–837

    Article  CAS  PubMed  Google Scholar 

  • Shailaja MS, D’Silva C (2003) Evaluation of impact of PAH on a tropical fish, Oreochromis mossambicus using multiple biomarkers. Chemosphere 53:835–841

    Article  CAS  PubMed  Google Scholar 

  • Shao B, Zhu LS, Dong M, Wang J, Wang JH, Xie H, Zhang QM, Du ZQ, Zhu SY (2012) DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21:1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Shiosaka T, Okuda H, Fujii S (1971) Mechanism of the phosphorylation of thymidine by the culture filtrates of Clostridium perfringens and rat liver extract. Biochim Biophys Acta 246:171–183

    Article  CAS  PubMed  Google Scholar 

  • Siegers CP (1989) Glutathione and glutathione dependent enzymes. In: A. S. Koster, E. Richter, F. Lauterbach, F. Hartman (Eds.), Intestinal metabolism of xenobiotics. Prog in Pharmacol Clin Pharmacol 7:171–180

  • Singer HP, Muller SR, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Stanic B, Andric N, Zoric S, Grubor-Lajsic G, Kovacevic R (2006) Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in starlet (Acipenser ruthenus L.). Ecotoxicol Environ Saf 65:395–402

    Article  CAS  PubMed  Google Scholar 

  • Stephanie L, Fraker GRS (2004) Direct and interactive effects of ecologically relevant concentrations of organic wastewater contaminants on Rana pipiens tadpoles. Environ Toxicol 19:250–256

    Article  CAS  Google Scholar 

  • Svoboda M (2001) Stress in fish—review. Bul VURH Vodnany 37:69–191

    Google Scholar 

  • Ternes TA, Joss A, Siegrist H (2004) Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392–399

    Article  Google Scholar 

  • Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S (2003) Histopathological alterations of white sea bass, Lates calcacifer, in acute and sub acute cadmium exposure. Environ Pollut 121:307–320

    Article  CAS  PubMed  Google Scholar 

  • Tietz NW (1990) Clinical guide to laboratory test, 2nd edn. W.B. Saunders Co, Philadelphia, p 118

    Google Scholar 

  • Toni C, Menezes CC, Loro VL, Clasen BE, Cattaneo R, Santi A, Pretto A, Zanella R, Leitemperger J (2010) Oxidative stress biomarkers in Cyprinus carpio exposed to commercial herbicide bispyribac-sodium. J Appl Toxicol 30:590–595

    Article  CAS  PubMed  Google Scholar 

  • Valters K, Li HX, Alaee M, D’Sa I, Marsh G, Bergman A, Letcher RJ (2005) Polybrominated diphenyl ethers and hydroxylated and methoxy-lated brominated and chlorinated analogues in the plasma of fish from the Detroit River. Environ Sci Technol 39:5612–5619

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Xu R, Zheng F, Liu H (2018) Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus). Exp Anim 67(2):219–227

    Article  CAS  PubMed  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    Article  CAS  Google Scholar 

  • Wind T, Werner U, Jacob M, Hauk A (2004) Environmental concentrations of boron, LAS, EDTA, NTA and triclosan simulated with GREAT-ER in the River Utter. Chemosphere. 54:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Beland FA, Fang JL (2016) Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol in Vitro 32:310–319

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Xu H, Shen Y, Qiu W, Yang M (2011) Oxidative stress in zebrafish embryos induced by short-term exposure to bisphenol A, nonylphenol, and their mixture. Environ Toxicol Chem 30:2335–2341.

  • Young DS, Pestaner LC, Gibberman V (1975) Effects of drugs on clinical laboratory tests. Clin Chem 21:1D–432D

    CAS  PubMed  Google Scholar 

  • Zhang NS, Liu YS, Van den Brink PJ, Price OR, Ying GG (2015) Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities. Ecotoxicol Environ Saf 122:417–425

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

D. Hemalatha is thankful to UGC, New Delhi for the grant of Basic Science Research Fellowship No. F.7-24/2007 (BSR) and DST-FIST, New Delhi for providing basic facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathan Ramesh.

Ethics declarations

The experiments and the handling of the organisms were carried out as per the guidelines of the CPCSEA.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, D., Nataraj, B., Rangasamy, B. et al. DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan. Fish Physiol Biochem 45, 1463–1484 (2019). https://doi.org/10.1007/s10695-019-00661-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00661-2

Keywords

Navigation