Skip to main content
Log in

Multiple vitellogenins in zebrafish (Danio rerio): quantitative inventory of genes, transcripts and proteins, and relation to egg quality

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Scrutiny of the zebrafish (Danio rerio) genomic database confirmed eight functional vitellogenin (vtg) genes, each with one or two transcript variants, and the encoded Vtg polypeptides were structurally and functionally characterized in detail by in silico and experimental analyses. There were five type I (vtgs1, 4, 5, 6, and 7), two type II (vtg2 and vtg8), and one type III (vtg3) vtg gene(s) encoding three major types of Vtg protein based on subdomain structure (Vtg-I, Vtg-II, and Vtg-III, respectively). Among various tissues of mature zebrafish, transcripts of the eight vtg genes were detected by RNA-Seq only in liver and intestine, with liver being the main site of vtg expression. All vtg transcripts except vtg8 were also detected in mature female liver by RT-qPCR. The relative abundances of Vtg proteins and their variants were quantified by LC-MS/MS in the liver of mature females and in eggs. The Vtgs were generally several fold more abundant in eggs, but profiles of abundance of the 19 different forms of Vtg evaluated were otherwise similar in liver and eggs, suggesting that yolk protein composition is determined largely by hepatic Vtg synthesis and secretion. Based on transcript and protein levels, Vtg-I is, by far, the dominant type of Vtg in zebrafish, followed by Vtg-II and then Vtg-III. When relative abundances of the different forms of Vtg were evaluated by LC-MS/MS in egg batches of good versus poor quality, no differences in the proportional abundance of individual forms of Vtg, or of different Vtg types, attributable to egg quality were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen Ø, Xu C, Timmerhaus G, Kirste KH, Naeve I, Mommens M, Tveiten H (2017) Resolving the complexity of vitellogenins and their receptors in the tetraploid Atlantic salmon (Salmo salar): ancient origin of the phosvitin-less VtgC in chondrichthyean fishes. Mol Reprod Dev 84(11):1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Babin PJ (2008) Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome. Gene 413:76–82

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bromage NR, Roberts RJ (1995) Broodstock management and egg and larva quality. Blackwell Science Press, Oxford, p 424

    Google Scholar 

  • Brooks S, Tyler CR, Sumpter JP (1997) Egg quality in fish: what makes a good egg? Rev Fish Biol Fish 7:387–416

    Article  Google Scholar 

  • Carnevali O, Cionna C, Tosti L, Lubzens E, Maradonna F (2006) Role of cathepsins in ovarian follicle growth and maturation. Gen Comp Endocrinol 146:195–203

    Article  CAS  PubMed  Google Scholar 

  • Castets MD, Shaerlinger B, Silvestre F, Gardeur JN, Dieu M, Corbier C et al (2012) Combined analysis of Perca fluviatilis reproductive performance and oocyte proteomic profile. Theriogenology 78:432–442. https://doi.org/10.1016/j.theriogenology.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  • Finn RN (2007) The maturational disassembly and differential proteolysis of paralogous vitellogenins in a marine pelagophil teleost: a conservedmechanism of oocyte hydration. Biol Reprod 76:936–948

  • Finn RN, Fyhn HJ (2010) Requirement for amino acids in ontogeny of fish. Aquac Res 41:684–716

    Article  CAS  Google Scholar 

  • Finn RN, Kristoffersen BA (2007) Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts. PLoS One 2(1):e169

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RN, Kolarevic J, Kongshaug H, Nilsen F (2009) Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol Biol 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38(Suppl):W695–W699. https://doi.org/10.1093/nar/gkq313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groh K, Nesatyy VJ, Segner H, Eggen RIL, Suter MJ-F (2011) Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). Fish Physiol Biochem 37:619–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramatsu N, Matsubara T, Hara A, Donato DM, Hiramatsu K, Denslow ND, Sullivan CV (2002) Identification, purification and classification of multiple forms of vitellogenin from white perch (Morone americana). Fish Physiol Biochem 26:355–370

    Article  CAS  Google Scholar 

  • Hiramatsu N, Cheek AO, Sullivan CV, Matsubara T, Hara A (2005) Vitellogenesis and endocrine disruption. pp. 431–471. In: Biochemistry and molecular biology of fishes, vol. 6, environmental toxicology, chapter 16 (Mommsen TP, Moon T, editors), Elsevier Science Press, Amsterdam, The Netherlands. pp. 562

  • Hiramatsu N, Todo T, Sullivan CV, Schilling J, Reading B, Matsubara T, Ryu Y-W, Mizuta H, Luo W, Nishimiya O, Wu M, Mushirobira Y, YIlmaz O, Hara A (2015) Ovarian yolk formation in fishes: molecular mechanisms underlying formation of lipid droplets and vitellogenin-derived yolk proteins. Gen Comp Endocrinol 221:9–15

    Article  CAS  PubMed  Google Scholar 

  • Lavigne R, Becker E, Liu Y, Evrard B, Lardenois A, Primig M, Pineau C (2012) Direct iterative protein profiling (DIPP)—an innovative method for large-scale protein detection applied to budding yeast mitosis. Mol Cel Proteom 11:M111–M012682

  • Lubzens E, Bobe J, Young G, Sullivan CV (2017) Maternal investment in fish oocytes and eggs: the molecular cargo and its contributions to fertility and early development. Aquaculture 472:107–143

    Article  CAS  Google Scholar 

  • Matsubara T, Nagae M, Ohkubo N, Andoh T, Sawaguchi S, Hiramatsu N, Sullivan CV, Hara A (2003) Multiple vitellogenins and their unique roles in marine teleosts. Fish Physiol Biochem 28:295–299

    Article  CAS  Google Scholar 

  • Meng X, Bartholomew C, Craft JA (2010) Differential expression of vitellogenin and oestrogen receptor genes in the liver of zebrafish, Danio rerio. Anal Bioanal Chem 396:625–630

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NTT, Vincens P, Crollius HR, Louis A (2017) Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing. Nucleic Acids Res 46:–D822. https://doi.org/10.1093/nar/gkx1003

  • Pasquier J, Cabau C, Nguyen T, Jouanno E, Severac D, Braasch I, Journot L, Pontarotti P, Klopp C, Postlethwait JH, Guiguen Y, Bobe J (2016) Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics 17:368

    Article  PubMed  PubMed Central  Google Scholar 

  • Patiño R, Sullivan CV (2002) Ovarian follicle growth, maturation, and ovulation in teleost fishes. Fish Physiol Biochem 26:57–70

  • Pousis C, Mylonas CC, De Virgilio C, Gadaleta G, Santamaria N, Passantino L, Zupa R, Papadaki M, Fakriadis I, Ferreri R, Corriero A (2017) The observed oogenesis impairment in greater amberjack Seriola dumerili (Risso, 1810) reared in captivity is not related to an insufficient liver transcription or oocyte uptake of vitellogenin. Aquac Res 2017:1–10

    Google Scholar 

  • Reading BJ, Sullivan CV (2010) Vitellogenesis in fishes, chapter 257. In: Farrell AP, Stevens ED, Cech JJ Jr, Richards JG (eds) Encyclopedia of fish physiology: from genome to environment. Academic Press, Cambridge, p 2272

    Google Scholar 

  • Reading BJ, Sullivan CV (2011). Vitellogenesis in fishes. In: AP Ferrell (ed.) Encyclopedia of fish physiology: From genome to environment. The reproductive organs and processes. Reference Module in Life Sciences 2011 edition. 1st ed. pp. 635–646. Maryland Heights, Missouri: Elsevier doi:https://doi.org/10.1016/B978-0-12-374553-8.00257-4

  • Reading BJ, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively MO, Sullivan CV (2009) Conserved and variant molecular and functional features of multiple vitellogenins in white perch (Morone americana) and other teleosts. Mar Biotechnol 11(2):169–187

    Article  CAS  Google Scholar 

  • Ribas L, Piferrer F (2013) The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Rev Aquac 5:1–32

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins D. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7 Article number: 539 doi:https://doi.org/10.1038/msb.2011.75

  • Sullivan, CV, Yilmaz, O (2018) Vitellogenesis & yolk proteins, fish. Chapter 47. In: Volume 6—comparative reproduction (P. Swanson and M.K. Skinner, Eds.). Encyclopedia of reproduction, 2nd edition. Biomedical Sciences Module. Elsevier (in press). January, 2018

  • Thompson J, Higgins D, Gibson T (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tingaud-Sequeira A, Knoll-Gellida A, André M, Babin PJ (2012) Vitellogenin expression in white adipose tissue in female teleost fish. Biol Reprod 86:38

    Article  PubMed  Google Scholar 

  • Trichet V, Buisine N, Mouchel N, Moran P, Pendas AM, Le Pennec J-P, Wolff J (2000) Genomic analysis of the vitellogenin locus in rainbow trout (Oncorhynchus mykiss) reveals a complex history of gene amplification and retroposon activity. Mol Gen Genet 263:828–837

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yan T, Tan JTT, Gong Z (2000) A zebrafish vitellogenin gene (vg3) encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene 256:3030–3310

    Article  Google Scholar 

  • Wang H, Tan JTT, Emelyanov A, Korzh V, Gong Z (2005) Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio. Gene 356:9–100

    Article  Google Scholar 

  • Williams VN, Reading BJ, Hiramatsu N, Amano H, Glassbrook N, Hara A, Sullivan CV (2014) Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation. Fish Physiol Biochem 40:395–415

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz O, Prat F, Ibañez AJ, Amano H, Koksoy S, Sullivan CV (2015) Estrogen induced yolk precursors in European sea bass, Dicentrarchus labrax: status and perspectives on multiplicity and functioning of vitellogenins. Gen Comp Endocrinol 221:16–22

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz O, Prat F, Ibañez AJ, Koksoy S, Amano H, Sullivan CV (2016) Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): molecular characterization, quantification in plasma, liver and ovary and maturational proteolysis. Comp Biochem Physiol B 194:71–86

    Article  PubMed  Google Scholar 

  • Yilmaz O, Patinote A, Nguyen TV, Com E, Lavigne R, Pineau C, Sullivan CV, Bobe J (2017) Scrambled eggs: proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio). PLoS One 12(11):e0188084

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Yuan L, Rao Y, Li Z, Zhang Z, Liao T, Xu Y, Dai H (2014) Distribution of vitellogenin in zebrafish (Danio rerio) tissues for biomarker analysis. Aquat Toxicol 149:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Protim - Proteomics core facility (Rennes, France) for providing access to their LC-MS/MS service, Dr. Nigel FINN for providing Fig. 2 and an anonymous reviewer of this article in draft for helpful suggestions on data analysis, representation and writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Yilmaz.

Electronic supplementary material

ESM 1

(PDF 141 kb)

ESM 2

(PDF 635 kb)

ESM 3

(PDF 1020 kb)

ESM 4

(PDF 157 kb)

ESM 5

(DOCX 74 kb)

ESM 6

(DOCX 268 kb)

ESM 7

(DOCX 93 kb)

ESM 8

(DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, O., Patinote, A., Nguyen, T. et al. Multiple vitellogenins in zebrafish (Danio rerio): quantitative inventory of genes, transcripts and proteins, and relation to egg quality. Fish Physiol Biochem 44, 1509–1525 (2018). https://doi.org/10.1007/s10695-018-0524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0524-y

Keywords

Navigation