Skip to main content
Log in

Anti-oxidative functions of mt2 and smtB mRNA expression in the gills and brain of zebrafish (Danio rerio) upon cadmium exposure

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

There were not any past studies about metallothionein isoforms (smtB and mt2) having anti-oxidative functions on zebrafish after Cd2+ exposure. On the other hand, the anti-oxidative enzymatic factors such as superoxide dismutase (sod), glutathione peroxidase (gpx1a), and catalase (cat) are used as references to investigate whether the smtB and mt2 have anti-oxidative responses on the gills and brain of zebrafish after 1–6 h of 0 and 1.78 μM Cd2+ exposure. The anti-oxidative system such as sod, cat, and gpx1a mRNA expressions demonstrated a cascade response upon Cd2+-induced oxidative stress in the present study. Interestingly, the smtB mRNA expression levels increased by 3.2- to 6.1-fold, and mt2 raised by 4.1- to 11.3-fold in gills at 1 and 3 h after exposure to Cd2+, respectively. On the other hand, the smtB mRNA levels increased by 10.6- to 58.6-fold, but mt2 mRNA levels increased by 2.3- to 11.1-fold in brain at 1 and 3 h after exposure to Cd2+, respectively. In addition, both tissues showed increased apoptosis levels at 3 h, and recovery after 6 h of Cd2+ exposure. From the results, we suggest that both mt2 and smtB play a role in anti-oxidation responses within 6 h after exposure to Cd2+. In conclusion, the smtB mRNA levels have a higher response than mt2 in the brain, but both mRNA expressions appear to have a similar pattern in the gill. We suggest that smtB plays an important role to defend oxidative stress in the brain of adult zebrafish upon acute Cd2+ exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88

    Article  Google Scholar 

  • An KW, Kim NN, Shin HS, Kil GS, Choi CY (2010) Profiles of antioxidant gene expression and physiological changes by thermal and hypoosmotic stresses in black porgy (Acanthopagrus schlegeli). Comp Biochem Physiol 156A:262–268

    Article  CAS  Google Scholar 

  • Atli G, Canli M (2010) Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicol Environ Saf 73:1884–1889

    Article  CAS  PubMed  Google Scholar 

  • Bagnyukova TV, Lushchak OV, Storey KB, Lushchak VI (2007) Oxidative stress and antioxidant defense responses by goldfish tissues to acute changes of temperature from 3 to 23 °C. J Therm Biol 32:227–234

    Article  CAS  Google Scholar 

  • Barzilai A, Yamamoto KI (2004) DNA damage responses to oxidative stress. DNA Repair 3:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Huang W, Liu J, Yin X, Dou S (2010) Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure. Comp Biochem Physiol 151C:386–392

    CAS  Google Scholar 

  • Chen Y, Maret W (2001) Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur J Biochem 268:3346–3353

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Zhu JY, Chan KM (2014) Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells. Aquat Toxicol 157:196–206

    Article  CAS  PubMed  Google Scholar 

  • Choi CY, An KW, Nelson ER, Habibi HR (2007) Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPX) mRNA in goldfish, Carassius auratus. Comp Biochem Physiol 145C:595–600

    CAS  Google Scholar 

  • Choi JE, Kim J, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159

    Article  CAS  PubMed  Google Scholar 

  • Crawshaw L, Grahn D, Wollmuth L, Simpson L (1985) Central nervous regulation of body temperature in vertebrates: comparative aspects. Pharmacol Ther 30:19–30

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  PubMed  Google Scholar 

  • Firat O, Cogun HY, Aslanyavrusu S, Kargin F (2009) Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. J Appl Toxicol 29:295–301

    Article  CAS  PubMed  Google Scholar 

  • Hsu T, Huang KM, Tsai HT, Sung ST, Ho TN (2013) Cadmium (Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos. Aquat Toxicol 126:9–16

    Article  CAS  PubMed  Google Scholar 

  • Imada I, Sato EF, Miyamoto M, Ichimori Y, Minamiyama Y, Konaka R, Inoue M (1999) Analysis of reactive oxygen species generated by neutrophils using a chemiluminescence probe L-012. Anal Biochem 271:53–58

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi A, Kashiwagi K, Takase M, Hanada H, Nakamura M (1997) Comparison of catalase in diploid and haploid Rana regosa using heat and chemical inactivation techniques. Comp Biochem Physiol 118B:499–503

    Article  CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942

    Article  CAS  PubMed  Google Scholar 

  • Liu CT, Chou MY, Lin CH, Wu SM (2012) Effects of ambient cadmium with calcium on mRNA expression of calcium uptake related transporters in zebrafish (Danio rerio) larvae. Fish Physiol Biochem 38:977–988

    Article  CAS  PubMed  Google Scholar 

  • Porter NA, Mills KA, Caldwell SE (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    Article  CAS  PubMed  Google Scholar 

  • Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, Winston GW (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423

    Article  CAS  PubMed  Google Scholar 

  • Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114

    Article  CAS  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  CAS  PubMed  Google Scholar 

  • Sellin MK, Eidem TM, Kolok AS (2007) Cadmium exposures in fathead minnows: Are there sex-specific differences in mortality, reproductive success, and Cd accumulation? Arch Environ Contam Toxicol 52:535–540

    Article  CAS  PubMed  Google Scholar 

  • Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, Waalkes MP (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73:294–300

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Dodd A, Lai D, Mcnabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochem Biophys Sin 39:384–390

    Article  CAS  Google Scholar 

  • Taylor EW, Beaumont MW, Butler PJ, Mair J, Mujallid MSI (1996) Lethal and sublethal effects of copper upon fish: a role for ammonia toxicity. In: Taylor EW (ed) Toxicology of aquatic pollution: physiological, cellular and molecular approaches. Cambridge University Press, Cambridge, pp 85–113

    Chapter  Google Scholar 

  • Tseng YC, Chen RD, Lucassen M, Schmidt MM, Dringen R, Abele D, Hwang PP (2011) Exploring upcoupling proteins and antioxidant mechanisms under acute cold exposure in brain of fish. PLoS One 6:e18180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  PubMed  Google Scholar 

  • Wendel A (1980) Glutathione peroxidase. In: Jakoby WB (ed) Enzymatic basis of detoxification, vol 1. Academic Press, New York, pp 333–353

    Chapter  Google Scholar 

  • Wu SM, Jong KJ, Lee YJ (2006) Relationships among metallothionein, cadmium accumulation, and cadmium tolerance in three species of fish. Bull Environ Contam Toxicol 76:595–600

    Article  CAS  PubMed  Google Scholar 

  • Wu SM, Shih MJ, Ho YC (2007) Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comp Biochem Physiol 145C:218–226

    CAS  Google Scholar 

  • Wu SM, Zheng YD, Kuo CH (2008a) Expression of mt2 and smt-B upon cadmium exposure and cold shock in zebrafish (Danio rerio). Comp Biochem Physiol 148C:184–193

    CAS  Google Scholar 

  • Wu SM, Ding HR, Lin LY, Lin YS (2008b) Juvenile tilapia (Oreochromis mossambicus) strive to maintain physiological functions after waterborne copper exposure. Arch Environ Contam Toxicol 54:482–492

    Article  CAS  PubMed  Google Scholar 

  • Wu SM, Tsai PR, Yan CJ (2012) Maternal cadmium exposure induces mt2 and smtB mRNA expression in zebrafish (Danio rerio) females and their offspring. Comp Biochem Physiol 156C:1–6

    Google Scholar 

  • Wu SM, Liu JH, Shu LH, Chen CH (2015) Anti-oxidative responses of zebrafish (Danio rerio) gill, liver and brain tissues upon acute cold shock. Comp Biochem Physiol 187A:202–213

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science Council, Taiwan (NSC101-2313-B-415-003-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Mei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S.M., Shu, LH. & Liu, JH. Anti-oxidative functions of mt2 and smtB mRNA expression in the gills and brain of zebrafish (Danio rerio) upon cadmium exposure. Fish Physiol Biochem 42, 1709–1720 (2016). https://doi.org/10.1007/s10695-016-0251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0251-1

Keywords

Navigation